🧬 一、研究背景与意义
浮游生物是海洋生态系统中至关重要的组成部分,其种群结构的变化对气候变化、海洋污染及渔业资源均有深远影响。然而,传统通过人工显微镜下观测进行物种统计的方式,效率低且准确率受限。因此,借助计算机视觉自动识别浮游生物成为科学研究的重要方向。
近年来,YOLO 系列作为实时目标检测的代表算法取得了巨大成功。尤其是 YOLOv10 以其更高精度与轻量化部署能力,非常适用于在有限算力的研究场景下识别微观生物图像。
📦 二、数据集选择与处理
✅ 推荐数据集:WHOI-Plankton
- 数据源:https://www.kaggle.com/datasets/cyberkolor/plankton-whole-image-dataset
- 由美国麻省伍兹霍尔海洋研究所(WHOI)发布。
- 包含:70+类浮游生物,20000+带标签的显微镜图像。
- 每张图像为高分辨率黑白图,标注为类名+位置坐标(以YOLO格式)。