1. 项目背景与意义
随着零售业的数字化转型,货架管理自动化成为提升供应链效率的重要环节。传统人工巡检存在效率低、错误率高的问题,且难以实现实时监控。通过深度学习的目标检测技术,可以实现对货架商品的自动识别与缺货检测,辅助管理人员快速发现缺货商品,及时补货,提升销售效率和顾客满意度。
因此,构建一个基于YOLOv8的货架商品缺货检测系统,结合便捷的UI界面,实现商品的实时识别和缺货状态告警,具有较强的实际应用价值。
2. 任务定义与问题分析
任务目标:
设计一个货架商品缺货检测系统,能自动检测货架上的各类商品,识别缺货或低库存商品,实现自动化的货架管理。
关键问题分析:
- 商品种类多样,形态、颜色复杂,检测难度大。
- 货架视角和光照条件变化大,影响检测准确性。
- 缺货状态判断依赖于对商品数量和货架空位的识别。
- 实时检测要求模型推理速度快,系统响应及时。
3. 相关技术介绍
3.1 YOLOv8目标检测模型简介
YOLOv8&#