1. 引言
随着智能农业的发展,牲畜养殖规模不断扩大,传统的人工监测方式面临诸多问题,如监测效率低、数据不准确等。基于计算机视觉的牲畜数量与健康状态自动监测系统应运而生,能够大幅提升养殖管理效率和动物福利。本文基于Ultralytics的YOLOv8目标检测算法,结合Python的PyQt5界面开发,设计实现了一个集牲畜数量统计与健康异常检测的智能系统,涵盖数据采集、训练、推理与交互界面全流程,提供完整代码示例及参考数据集,助力智慧养殖建设。
2. 项目背景与研究意义
- 牲畜健康监测对提高养殖效益、预防疾病传播至关重要。
- 自动监测系统减少人工依赖,保障监测数据实时性和准确性。
- 牲畜数量监测可辅助科学饲养和资源分配。
- 结合深度学习目标检测技术,实现多场景、多牲畜品种的智能识别。
3. 牲畜数量和健康状态监测的挑战
- 牲畜种类繁多,体型、颜色及姿态差异大,检测难度高。
- 牧场光照变化、遮挡及环境复杂性对模型鲁棒性提出要求。
- 健康异常如外伤、行为异常难以通过单纯检测框识别,需结合多模态分析。
- 实时性能和系统易用性同样重要,需设计高效、直观的用户界面。