一、项目背景
随着农业现代化进程加快,农产品的质量检测和分级分类成为提高农产品市场竞争力和农业生产效率的重要环节。传统的人工分级分类方法费时费力且受主观因素影响较大,难以实现大规模自动化。
深度学习技术的快速发展为农产品智能分级分类提供了新的思路。YOLO(You Only Look Once)系列目标检测模型凭借其高效的检测速度和较高的准确率,广泛应用于农产品的检测和分类任务中。
本文将以YOLOv8为基础,构建一个完整的农产品分级分类系统。系统包含模型训练、测试、以及基于Python的图形用户界面(UI),便于用户快速上传农产品图片实现自动分级分类。
二、问题定义与技术路线
2.1 问题定义
- 输入:农产品的图像(例如苹果、橙子、番茄等)
- 输出:农产品的类别标签及其对应的质量等级(如一级、二级、三级)
- 目标:实现对农产品类别及质量等级的准确识别和定位
2.2 技术路线
- 数据采集及标注
- 数据预处理与增强
- 基于YOLOv8的目标检测模型训练
- 模型评估与优化
- 构建基于PyQt5的UI界面,实现实时图片上传及检测显示