一、项目背景与意义
随着全球农业的智能化发展,精准灌溉技术成为提高农业用水效率、保护水资源和提升作物产量的关键技术之一。自动灌溉系统通常依赖于对农田内需水区域的精准识别和定位,以实现对灌溉设备的自动控制和管理。
传统的灌溉区域识别依赖于传感器数据和人工巡检,费时费力且难以做到大范围实时监控。基于计算机视觉的目标检测方法,尤其是深度学习的YOLO系列,因其检测速度快、精度高,逐渐成为自动化农业领域的主流选择。
本项目旨在基于YOLOv8目标检测模型,实现对自动灌溉区域的实时精准识别,并开发一个简易的图形用户界面(UI),方便农业技术人员上传田间图片,实现智能自动灌溉区域识别。
二、技术方案与任务分析
2.1 任务定义
- 输入:农田图片或视频帧(包括带有自动灌溉设备的灌溉区域)
- 输出:自动灌溉区域的位置边界框和类别标签
- 目标:实现快速、准确地检测和定位自动灌溉区域,为自动化灌溉系统提供视觉信息支持
2.2 技术方案
- 数据采集与标注,形成标准的目标检测数据集<