1. 项目背景与动机
视频监控在公共安全、体育赛事分析和社会管理中发挥着越来越重要的作用。自动检测打架行为(fighting)不仅能够协助安保人员实时响应突发事件,还能帮助赛事分析团队深入理解比赛过程中的关键瞬间。
传统打架检测依赖人工观察,费时费力,且易受主观因素影响。基于深度学习的目标检测技术,尤其是轻量且高效的YOLOv10,能够实现实时、准确的打架行为识别。本项目以UFC Fight Dataset为例,系统介绍如何基于YOLOv10搭建一个打架检测系统,并配套实现可视化UI界面,方便实时使用。
2. 数据集介绍——UFC Fight Dataset
2.1 数据集概述
UFC Fight Dataset 是一套专门用于格斗动作识别与检测的数据集,包含大量UFC比赛视频片段,涵盖打架(fighting)动作及非打架场景。
- 视频时长:多段数秒至数分钟不等
- 数据量:约1000+带标签的视频剪辑
- 标签内容:打架行为(bounding boxes + fighting class),以及非打架类ÿ