📌 一、项目背景与意义
在公共卫生事件频发的背景下,自动化检测人群中是否佩戴口罩成为保障公共安全的重要手段。传统的人脸检测算法在复杂环境下性能有限,尤其是在遮挡、光照变化等情况下。为了解决这一问题,本文提出了基于YOLOv10的人脸口罩佩戴检测系统,利用WIDER FACE数据集进行训练,并开发了图形用户界面,方便用户进行实时检测和可视化操作。
📚 二、核心技术与工具链
分类 | 技术栈 |
---|---|
深度学习 | YOLOv10 |
UI开发 | PyQt5 |
图像处理 | OpenCV |
训练平台 | PyTorch |
可视化 | matplotlib, seaborn |
环境管理 | Conda / pipenv |
📦 三、数据集准备
3.1 数据集选择
本项目选用以下公开数据集:
- WIDER FACE Dataset&