医疗工具检测(SurgicalToolsDetection)——基于Surgical Tools Dataset与YOLOv10的深度学习实现及PyQt5 UI界面

1. 项目背景及意义

医疗工具如手术刀(Scalpel)、注射器(Syringe)等,是手术过程中不可或缺的重要器械。自动化检测医疗工具能大幅提升手术安全性和管理效率,防止遗留异物和误操作。利用深度学习进行医疗工具检测,不仅可以实现手术室实时监控,还能为智能医疗机器人提供支持。

本项目基于公开的Surgical Tools Dataset,采用最新的YOLOv10模型进行医疗工具检测,并结合PyQt5实现用户交互界面,方便非专业人员使用。


2. Surgical Tools Dataset介绍及下载链接

2.1 数据集概述

Surgical Tools Dataset 是一套专门针对手术工具检测的公开数据集,包含多种手术器械的标注图片,涵盖手术刀、注射器、钳子等多种器械。

  • 图像数量:约5000张高清图片
  • 标注类型:目标检测(bounding box)
  • 类别数量:10+(本项目重点使用Scalpel和Syringe)
  • 图片分辨率:多样,主要为1024x768及以上

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值