1. 项目背景及意义
医疗工具如手术刀(Scalpel)、注射器(Syringe)等,是手术过程中不可或缺的重要器械。自动化检测医疗工具能大幅提升手术安全性和管理效率,防止遗留异物和误操作。利用深度学习进行医疗工具检测,不仅可以实现手术室实时监控,还能为智能医疗机器人提供支持。
本项目基于公开的Surgical Tools Dataset,采用最新的YOLOv10模型进行医疗工具检测,并结合PyQt5实现用户交互界面,方便非专业人员使用。
2. Surgical Tools Dataset介绍及下载链接
2.1 数据集概述
Surgical Tools Dataset 是一套专门针对手术工具检测的公开数据集,包含多种手术器械的标注图片,涵盖手术刀、注射器、钳子等多种器械。
- 图像数量:约5000张高清图片
- 标注类型:目标检测(bounding box)
- 类别数量:10+(本项目重点使用Scalpel和Syringe)
- 图片分辨率:多样,主要为1024x768及以上