1. 引言
在现代遥感与地理信息系统领域,卫星图像的目标检测是极为关键的任务。它广泛应用于国防监控、城市规划、环境保护等诸多场景。面对高分辨率遥感图像中的目标,如飞机、船只等,传统的检测方法已难以满足高精度和高效率的需求。
近年来,基于深度学习的目标检测算法,尤其是YOLO系列模型,凭借端到端训练和实时推理能力,成为卫星图像目标检测的主流选择。本文将以DOTA数据集为基础,利用最新的YOLOv10模型,详细介绍卫星图像中飞机和船只目标检测的完整流程,并实现一个直观的UI界面,帮助用户快速完成检测任务。
2. 卫星图像目标检测背景与应用
卫星图像目标检测指的是从遥感拍摄的大范围地表图像中自动识别和定位特定目标物体,如军事装备、船只、飞机等。其技术难点主要包括:
- 目标尺寸差异大,且密集排列
- 背景复杂多变,干扰强
- 标注和数据处理难度大
应用场景包括:
- 国防安全监控,监测敌军装备动态
- 海洋监测,识别非法捕捞船只
- 灾害应急,快速定位受损区域的关键设施
- 城市规划与管理
3. DOTA数据集介绍
DOTA