1. 引言
在现代办公自动化和信息抽取领域,文档中表格及文本块的自动识别是关键技术之一。它为后续的文档结构分析、信息抽取、数据表格结构恢复等提供基础支持。传统的基于规则或图像处理的方法存在鲁棒性不足和适应性差的问题。深度学习,尤其是基于目标检测的框架,为表格和文本检测带来了显著提升。
本文以PubLayNet数据集为基础,使用YOLOv10模型进行文档表格与文本的检测任务。为了方便展示检测效果,我们同时开发了一个简单的UI界面,方便用户上传文档图片并实时看到检测结果。
2. 文档表格检测背景与应用场景
文档分析包括对论文、报告、合同等文档的结构化理解。表格检测作为重要模块,应用于:
- 自动信息抽取:快速获取表格中的关键信息;
- 电子文档数字化:将扫描文档结构化,方便检索与分析;
- OCR辅助:区分文本与表格区域,提高文字识别准确率;
- 企业智能化办公:合同、报表自动审核与归档。
准确且高效的表格检测可极大提升后续文档处理流程的自动化水平。
3. 数据集介绍:PubLayNet
PubLayNet是一个公开且大型的文档图像结构识别数据集,基于超过50万页的学术