1. 引言
仓库自动化与机器人导航已成为物流行业的热点方向。机器人在仓库中高效、准确地识别托盘(pallet)和箱子(box)是导航和物料搬运的关键视觉任务。Amazon Robotics Challenge (ARC) 提供了丰富的多目标检测数据,支持机器人视觉算法研究。
本文通过YOLOv8结合ARC数据,打造一个高效、准确的检测系统,并基于PyQt实现友好的操作界面,助力机器人实现稳定导航。
2. 任务背景与挑战
- 目标多样:托盘与箱子在尺寸、形状、材质上差异大
- 环境复杂:光照、遮挡、背景杂乱
- 实时性要求:机器人导航需低延迟高频次检测
- 标注复杂度:多目标、多尺度检测任务
解决方案需结合强大的深度学习检测模型与高效部署策略。
3. 数据集介绍——Amazon Robotics Challenge
3.1 ARC数据集概述
- 来源:Amazon Robotics Challenge竞赛
- 内容:仓库环境中的各种物体图像,重点是托盘、箱子等物流关键物品
- 标注:多目标边框框选&#