引言
随着电子竞技和虚拟现实技术的迅猛发展,手势识别在游戏控制、虚拟交互和增强现实等领域的应用日益广泛。准确、高效的手势识别系统不仅可以提升用户体验,还能为残障人士提供新的交互方式。本文将详细介绍如何基于YOLOv8模型,结合HaGRID数据集,构建一个集成图形用户界面(GUI)的电竞手势识别系统。
项目概述
本项目旨在实现以下功能:
- 手势检测与识别:利用YOLOv8模型对手势进行实时检测和分类。
- 图形用户界面:提供友好的GUI,方便用户加载视频、查看检测结果。
- 系统部署:实现模型的训练、验证和部署,确保系统的实用性和可扩展性。
数据集准备
HaGRID数据集简介
HaGRID(HAnd Gesture Recognition Image Dataset)是一个大规模的手势识别数据集,包含超过55万张全高清RGB图像,涵盖18种手势类别和一个“无手势”类别。该数据集由37,583名参与者在不同的光照条件和背景下采集,具有高度的多样性和代表性。