基于YOLOv12的野生动物闯入检测系统——以Snapshot Serengeti数据集为例

1. 引言

野生动物保护与人类活动区域的冲突日益突出,开发高效的野生动物闯入检测系统对于生态保护和人类安全都具有重要意义。本文将详细介绍如何使用YOLOv12深度学习模型在Snapshot Serengeti数据集上构建野生动物闯入检测系统,并实现完整的UI界面。

2. 相关工作与数据集介绍

2.1 野生动物检测研究现状

野生动物检测面临的主要挑战:

  1. 动物形态多样性大
  2. 自然环境背景复杂
  3. 动物行为模式多变
  4. 光照和天气条件影响大

传统方法主要基于运动检测和特征工程,而深度学习方法显著提高了检测准确率。

2.2 Snapshot Serengeti数据集

Snapshot Serengeti是一个大规模的野生动物图像数据集,包含:

  • 数据规模:超过7.1万张相机陷阱照片
  • 物种数量:48种常见非洲草原动物
  • 标注信息:每张图片包含物种标签、数量及行为信息
  • 环境特点:真实的野外环境,包含各种光照和天气条件

数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值