1. 项目背景与研究意义
在智能交通和自动驾驶领域,交通信号灯检测是环境感知的核心任务之一。准确识别红绿灯的状态(红灯、绿灯、黄灯或熄灭)直接影响车辆的行驶决策和安全保障。尽管现有多传感器融合方案不断发展,视觉基的信号灯检测仍是性价比高且应用广泛的方案。
本项目基于经典且公开的LISA交通信号灯数据集,利用当前最先进的YOLOv12目标检测模型,构建红绿灯状态检测系统。系统不仅支持高准确率检测,还集成了交互式UI界面,方便用户实时监测并展示检测结果。
2. 交通信号灯状态检测的技术难点
- 小目标检测:红绿灯在图像中尺寸较小,且距离变化大。
- 光照变化:不同天气、时间导致光照条件复杂。
- 多状态识别:红灯、绿灯、黄灯不同颜色及熄灭状态判定。
- 环境干扰:树影、车辆反光等易造成误判。
3. 参考数据集介绍:LISA Traffic Light Dataset
3.1 数据集概述
- 发布者:加州大学圣地亚哥分校