红绿灯状态检测系统设计与实现 —— 基于LISA交通信号灯数据集的YOLOv12深度学习模型与UI界面

1. 项目背景与研究意义

在智能交通和自动驾驶领域,交通信号灯检测是环境感知的核心任务之一。准确识别红绿灯的状态(红灯、绿灯、黄灯或熄灭)直接影响车辆的行驶决策和安全保障。尽管现有多传感器融合方案不断发展,视觉基的信号灯检测仍是性价比高且应用广泛的方案。

本项目基于经典且公开的LISA交通信号灯数据集,利用当前最先进的YOLOv12目标检测模型,构建红绿灯状态检测系统。系统不仅支持高准确率检测,还集成了交互式UI界面,方便用户实时监测并展示检测结果。


2. 交通信号灯状态检测的技术难点

  • 小目标检测:红绿灯在图像中尺寸较小,且距离变化大。
  • 光照变化:不同天气、时间导致光照条件复杂。
  • 多状态识别:红灯、绿灯、黄灯不同颜色及熄灭状态判定。
  • 环境干扰:树影、车辆反光等易造成误判。

3. 参考数据集介绍:LISA Traffic Light Dataset

3.1 数据集概述

  • 发布者:加州大学圣地亚哥分校
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值