前文
- 一、Windows系统下安装Tensorflow2.x(2.6)
- 二、深度学习-读取数据
- 三、Tensorflow图像处理预算
- 四、线性回归模型的tensorflow实现
- 五、深度学习-逻辑回归模型
- 六、AlexNet实现中文字体识别——隶书和行楷
- 七、VGG16实现鸟类数据库分类
加利福尼亚理工学院鸟类数据库分类VGG16+BN版本
数据生成器
from keras.preprocessing.image import ImageDataGenerator
IMSIZE = 224
train_generator = ImageDataGenerator(rescale=1. / 255).flow_from_directory('../../data/data_vgg/train',
target_size=(IMSIZE, IMSIZE),
batch_size=20,
class_mode='categorical'
)
validation_generator = ImageDataGenerator(rescale=1. / 255).flow_from_directory('../../data/data_vgg/test',
target_size=(IMSIZE, IMSIZE),
batch_size=20,
class_mode='categorical'
)
)
图像显示
from matplotlib import pyplot as plt
plt.figure()
fig, ax = plt.subplots(2, 5)
fig.set_figheight(6)
fig.set_figwidth(15)
ax = ax.flatten()
X, Y = next

本文介绍了如何在Windows系统下安装Tensorflow 2.x,利用VGG16+BN模型对加利福尼亚理工学院的鸟类数据库进行分类。内容包括数据预处理、图像显示、模型构建、编译与训练,以及针对GPU资源优化的建议。
最低0.47元/天 解锁文章
2622

被折叠的 条评论
为什么被折叠?



