数字图像处理实验报告 实验五:形态学图像处理

实验五 形态学图像处理

一、实验目的
1、了解形态学的基本理论和方法。
2、掌握对图像进行开、闭、膨胀、腐蚀的方法。
二、实验环境
Matlab R2022a
三、实验内容
3.1实验题目
1、任选一种结构算子实现对图像或目标的开、闭、腐蚀和膨胀运算。
在这里插入图片描述
2、采用形态学处理方法实现图像去噪。
在这里插入图片描述
3、对图像分割实验(实验四)得到的分割结果进行形态学处理,对肺部区域的空洞进行填充。
4、请用形态学算法生成只包含边界接触的圆形。(选做题)
在这里插入图片描述
3.2相关知识
1、相关知识
图像的形态学描述与处理都基于填放结构元素的概念。结构元素的选择与从图像中抽取何种信息有密切关系。图像的形态学基本操作有腐蚀(Erosion)、膨胀(Dilation)、开(Opening)、闭(Closing)四种。利用这几种形态学操作,可以完成图像分割、特征抽取、边缘检测、图像增强等工作。
腐蚀操作是形态学最基本的操作之一。宏观上看,腐蚀运算可以使被处理的图像缩小,消除图像的边界,消除图像中小于结构元素大小的部分。如果图像中两部分存在细小的连通“桥”,则腐蚀运算可以将这一连通消除。腐蚀运算的算法如下:用结构元素,扫描图像中的每一个像素。用结构元素与其覆盖的二值图像做与运算。若结构元素的与元素都为1,则图像的该像素值置为1,否则值置为0。
膨胀操作与腐蚀操作相反,是腐蚀操作的逆运算。膨胀操作可以使被处理的图像增大,扩充图像边界的凹陷部分,填充图像中比结构元素小的空洞。对于多个不同的连通域,若存在缝隙,则填满该缝隙。膨胀运算的算法如下:用结构元素扫描图像的每一个像素,用结构元素与其覆盖的二值图像做“与”运算。如果都为0,结果图像该像素为0,否则为1。
形态学的开操作是先用结构元素进行腐蚀操作,而后再用腐蚀的结果再次进行膨胀操作。开操作能使得对象的轮廓变得光滑,断开狭窄的间断、消除细的突出物。
形态学的闭操作就是用结构元素对原图像先进行膨胀操作,后进行腐蚀操作,使得轮廓变得光华,但与开操作相反,用于消除狭窄的间断和鸿沟,消除小的空洞,填补轮廓线中的断裂。
在这里插入图片描述
本次实验的第四题是利用形态学操作进行一些简单的应用。
为了识别出图像各个圆形的边界,需要进行边界提取。由结构元素对原图像先进行腐蚀,再用原图像减去腐蚀后的图像,就能得到图像的边界。根据图像的边界,可以根据图像边界的周长判断哪些圆是独立的,哪些圆是与另外的圆互相连通的。利用这一种办法,提取出了图像中所有的连通分量。
在提取完连通分量,分离出与其他圆互相连通的圆后,就需要进行区域填充。为了自动地区分出哪些黑色像素点是圆内部的空洞、哪些黑色像素点是圆外部的背景,可以迭代的利用膨胀操作进行填充,直到图像不再发生任何变化。
2、部分核心代码
(1)随意地选取了一个线性的结构元素,对图像进行腐蚀操作。

I=imread("lab5_1.tif");
se = strel('line',10,10);
subplot(1,2,1);imshow(I);
I=imerode(I,se);
subplot(1,2,2);imshow(I);

(2)随意选取了一个线性结构元素,对图像进行膨胀操作。

I=imread("lab5_1.tif");
se = strel('line',5,5);
subplot(1,2,1);imshow(I);
I=imdilate(I,se);
subplot(1,2,2);imshow(I);

(3)随意选取了一个线性结构元素,对图像进行开操作。

I=imread("lab5_1.tif");
se = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Conn_w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值