[书生实战营] LMDeploy 量化部署进阶实践

  • 闯关任务:(1)使用结合W4A16量化与kv cache量化的internlm2_5-7b-chat模型封装本地API并与大模型进行一次对话;(2)使用Function call功能让大模型完成一次简单的“加”与“乘 ”函数调用。

1. LMDeploy部署模型

2. 大模型缓存推理技术

        其中,函数的输入参数hidden_states是新输入的x,past_key_value可以传入历史的key、value用于attention的计算,函数内容中,通过self.wqkv()将x获取为新的q、k、v。

        其中,cos和sin为计算得到的旋转位置编码,后续用于得到经过旋转位置编码之后的qkv。第325-328行为最关键的KV Cache环节,将本次计算得到的key、value加入缓存,并取出历史key、value。上述代码为InternLM官方基于python对KV Cache的实现,而LMDeploy在实现KV Cache时,在逻辑上和刚才的pytorch代码是类似的,只不过为了实现上更高效,以及对内存更为有效地利用,LMDeploy实现了一个KV Cache管理器,负责cache的更新维护,甚至可以在显存不足的时候把当前不需要使用的KV Cache由显存换入内存:

3. 大模型量化技术

        “训练后量化”指的是把模型训练好之后,通过一些简单的数据集标定或其他一些方式,不需要重复训练就可以完成量化的过程。QAT与QAF在把模型训练完之后,通常还需要采取一些额外的微调步骤来进行量化。

        对于权重,LMDeploy采取的是基于AWQ算法的,W4A16的量化方式,即对weight权重进行4bit量化,activation激活值(y=wx+b中的x)不做量化。也就是说,LMDeploy对权重进行4bit的量化存储,在实际计算时,会反量化为fp16的浮点数与激活值进行计算。大模型在实际推理的时候,计算瓶颈本身不在计算上,而是在访存上。

         其中,α*为开启search-scale参数时的优化参数。

4. 大模型外推技术


 

5. Function Calling

6. 量化部署实践

6.1 启动API服务器

        本次要运行参数量为7B的InternLM2.5,由InternLM2.5的码仓查询InternLM2.5-7b-chat的config.json文件可知,该模型的权重被存储为bfloat16格式:

    

        对于一个7B(70亿)参数的模型,每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:70×10^9 parameters×2 Bytes/parameter=14GB

  • 70亿个参数×每个参数占用2个字节=14GB

        所以我们需要大于14GB的显存,创建相应的虚拟环境,安装对应的依赖包,安装0.5.3版本的lmdeploy及相关包:

pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

        为方便文件管理,需要一个存放模型的目录,运行以下命令,创建文件夹并设置开发机共享目录的软链接,其中第二个模型作为一款VLM和InternLM2.5在操作上并无本质区别,仅是多出了"图片输入"这一额外步骤:

mkdir /root/models
ln -s /root/share/new_models//Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

        在量化工作正式开始前,需要验证一下获取的模型文件能否正常工作,进入创建好的conda环境并启动InternLM2_5-7b-chat:

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

         显存占用约23GB,如果选择 50%A100*1 建立机器,同样运行InternLM2.5 7B模型,会发现此时显存占用为36GB。那么这是为什么呢?由上文可知InternLM2.5 7B模型为bf16,LMDpeloy推理精度为bf16的7B模型权重需要占用14GB显存;如下图所示,lmdeploy默认设置cache-max-entry-count为0.8,即kv cache占用剩余显存的80%:

        此时对于24GB的显卡,即30%A100,权重占用14GB显存,剩余显存24-14=10GB,因此kv cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB。对于40GB的显卡同理。实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB。此外,如果想要实现显存资源的监控,也可以新开一个终端输入如下两条指令的任意一条,查看命令输入时的显存占用情况:

nvidia-smi 
studio-smi 

        实验室提供的环境为虚拟化的显存,nvidia-smi是NVIDIA GPU驱动程序的一部分,用于显示NVIDIA GPU的当前状态,故当前环境只能看80GB单卡 A100 显存使用情况,无法观测虚拟化后30%或50%A100等的显存情况。针对于此,实验室提供了studio-smi 命令工具,能够观测到虚拟化后的显存使用情况。

        在正式开始前,已经尝试验证了直接在本地部署InternLM2.5。而在实际应用中,有时会将大模型封装为API接口服务,供客户端访问。通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

        进行端口映射后可打开网页:

6.2 以命令行形式连接API服务器(可省略)

        关闭http://127.0.0.1:23333网页,但保持终端和本地窗口不动,新建一个终端,运行如下命令,激活conda环境并启动命令行客户端:

conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

6.3 以Gradio网页形式连接API服务器

        保持第一个终端不动,在6.2新建终端中输入exit退出,输入以下命令,使用Gradio作为前端,启动网页:

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

        关闭之前的cmd/powershell窗口,重开一个,再次做一下ssh转发(因为此时端口不同),重新做一次端口映射。

6.4 LMDeploy Lite

        随着模型变得越来越大,需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。权重量化减轻了访存权重区的显存开销,k/v cache减轻了访存KV缓存区的显存开销。

6.4.1 设置最大kv cache缓存大小

        kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。在上述操作中,采用默认情况显存占用约23GB,执行以下指令调整占用显存情况:

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

        可以看到减少了约4GB的显存占用。

6.4.2 设置在线kv cache int4/int8量化

        LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policycache-max-entry-count参数。目前,LMDeploy 规定 qant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。输入以下指令,重启API服务器:

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

        可以看到此时显存占用约19GB,此时4GB显存的减少逻辑与6.4.1一致,均因设置kv cache占用参数cache-max-entry-count至0.4而减少了4GB显存占用。但是这里的19GB的显存占用与6.4.1中的19GB的显存占用又是有区别的,由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为10GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍

6.4.3 W4A16模型量化和部署

        准确来说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。标题中,“W4”通常表示权重 量化为4位整数(int4),这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示,这样做可以显著减少模型的大小;“A16”表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16),激活是在神经网络中传播的数据,通常在每层运算之后产生。因此,W4A16的量化配置意味着:权重被量化为4位整数;激活保持为16位浮点数。回到LMDeploy,在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作:

lmdeploy lite auto_awq \
   /root/models/internlm2_5-7b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit

        等待推理完成:

        可以输入如下指令查看在当前目录中显示所有子目录的大小:

cd /root/models/
du -sh *

        其余文件夹都是以软链接的形式存在的,不占用空间,故显示为0,可去原始路径查看:

cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *

         输入以下指令启动量化后的模型:

lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq

        可以看到,相比较于原先的23GB显存占用,W4A16量化后的模型少了约2GB的显存占用,计算如下:

6.4.4 W4A16 量化 + KV cache + KV cache 量化(即前3小结结合)

        输入以下指令,同时启用量化后的模型、设定kv cache占用和kv cache int4量化:

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

6.5 API开发

        先前启动API服务器是借助FastAPI封装一个API出来让LMDeploy自行进行访问,本节将依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发。首先,进入创建好的conda环境并输入指令启动API服务器:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

        新建一个终端,并新建脚本文件 /root/internlm2_5.py:

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

        运行上述代码,封装本地API并与大模型进行一次对话:

        此时代表已经成功地使用本地API与大模型进行了一次对话,如果切回第一个终端窗口,会看到如下信息,这代表其成功的完成了一次用户问题GET与输出POST:

6.6 Function Call

        关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。

        首先,进入创建好的conda环境并启动API服务器:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

        为了让大模型完成一次简单的"加"与"乘"函数调用,新建脚本 /root/internlm2_5_func.py:

from openai import OpenAI


def add(a: int, b: int):
    return a + b


def mul(a: int, b: int):
    return a * b


tools = [{
    'type': 'function',
    'function': {
        'name': 'add',
        'description': 'Compute the sum of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}, {
    'type': 'function',
    'function': {
        'name': 'mul',
        'description': 'Calculate the product of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)

messages.append({
    'role': 'assistant',
    'content': response.choices[0].message.content
})
messages.append({
    'role': 'environment',
    'content': f'3+5={func1_out}',
    'name': 'plugin'
})
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

        运行上述脚本可得:

        可以看出InternLM2.5将输入'Compute (3+5)*2'根据提供的function拆分成了"加"和"乘"两步,第一步调用function add实现加,再于第二步调用function mul实现乘,再最终输出结果16。

  • 14
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值