多元线性回归算法预测房价

一、Jupyter编写算法实现

1.导入包和数据集

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv('house_prices.csv')
df.info();df.head()

在这里插入图片描述
2.探索变量

#异常值处理
#定义一个函数outlier_test(iqr&z分数两种方法)
def outlier_test(data,column,method=None,z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据 
    column: full_data 中的指定行,格式 'x' 带引号 
    return 可选; outlier: 异常值数据框 upper: 上截断点; lower: 下截断点 
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
    选 Z 方法时,Z 默认为 2 
    """
    #上下截断点法检验异常值
    if method==None:
        print(f'以{column}列为依据,使用上下截断点法(iqr)检测异常值')
        print('='*70)
        #四分位点:这里调用函数会存在异常
        column_iqr=np.quantile(data[column],0.75)-np.quantile(data[column],0.25)
        #1,3分位数
        (q1,q3)=np.quantile(data[column],0.25),np.quantile(data[column],0.75)
        #计算上下截断点
        upper,lower=(q3+1.5*column_ipr),(q1-1.5*column_iqr)
        #检测异常值
        outlier=data[(data[column]<=lower)|(data[column]>=upper)]
        print(f'第一分位数:{q1},第三分位数:{q3},四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}") 
        return outlier, upper, lower
    #z分数检验异常值
    if method=='z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以{column}列为依据,使用z分法,z分位数取{z}来检测异常值')
        print('='*70)
        # 计算两个 Z 分数的数值点
        mean,std=np.mean(data[column]),np.std(data[column])
        upper,lower=(mean+z*std),(mean-z*std)
        print(f'取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值')
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower
        outlier, upper, lower = outlier_test(data=df, column='price', method='z')
outlier.info(); outlier.sample(5)


在这里插入图片描述

在这里插入图片描述
热力图

# 热力图
def heatmap(data, method='pearson', camp='RdYlGn', figsize=(10 ,8)):
"""
data: 整份数据
method:默认为 pearson 系数
camp:默认为:RdYlGn-红黄蓝;YlGnBu-黄绿蓝;Blues/Greens 也是不错的选择
figsize: 默认为 108
"""
## 消除斜对角颜色重复的色块
# mask = np.zeros_like(df2.corr())
# mask[np.tril_indices_from(mask)] = True
plt.figure(figsize=figsize, dpi= 80)
sns.heatmap(data.corr(method=method), \
xticklabels=data.corr(method=method).columns, \
yticklabels=data.corr(method=method).columns, cmap=camp, \
center=0, annot=True)
# 要想实现只是留下对角线一半的效果,括号内的参数可以加上 mask=mask
# 通过热力图可以看出 area,bedrooms,bathrooms 等变量与房屋价格 price 的关系都还比较强
## 所以值得放入模型,但分类变量 style 与 neighborhood 两者与 price 的关系未知
heatmap(data=df, figsize=(6,5))

在这里插入图片描述

# 刚才的探索我们发现,style 与 neighborhood 的类别都是三类,
 ## 如果只是两类的话我们可以进行卡方检验,所以这里我们使用方差分析
    
## 利用回归模型中的方差分析
## 只有 statsmodels 有方差分析库
## 从线性回归结果中提取方差分析结果
import statsmodels.api as sm
from statsmodels.formula.api import ols # ols 为建立线性回归模型的统计学库
from statsmodels.stats.anova import anova_lm
# 数据集样本数量:6028,这里随机选择 600 条,如果希望分层抽样,可参考文章:
df = df.copy().sample(600)

# C 表示告诉 Python 这是分类变量,否则 Python 会当成连续变量使用
## 这里直接使用方差分析对所有分类变量进行检验
## 下面几行代码便是使用统计学库进行方差分析的标准姿势
lm = ols('price ~ C(neighborhood) + C(style)', data=df).fit()
anova_lm(lm)

# Residual 行表示模型不能解释的组内的,其他的是能解释的组间的
# df: 自由度(n-1- 分类变量中的类别个数减1
# sum_sq: 总平方和(SSM),residual行的 sum_eq: SSE
# mean_sq: msm, residual行的 mean_sq: mse
# F:F 统计量,查看卡方分布表即可
# PR(>F): P 值

# 反复刷新几次,发现都很显著,所以这两个变量也挺值得放入模型中

样本量 α-level
≤ 100 10%
100 < n ≤ 500 5%
500 < n ≤ 1000 1%
n > 2000 千分之一
样本量过大,α-level 就没什么意义了。数据量很大时,p 值就没用了,样本量通常不超过 5000,为了证明两变量间的关系是稳定的,样本量要控制好。
在这里插入图片描述
3.多元线性回归建模

from statsmodels.formula.api import ols
lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit()
lm.summary()

在这里插入图片描述
4.模型优化
通过上面的结果显示,可以发现精度还不够高,这里通过添加虚拟变量与使用方差膨胀因子检测多元共线性的方式来提升模型精度

# 设置虚拟变量
# 以名义变量 neighborhood 街区为例
nominal_data = df['neighborhood']
# 设置虚拟变量
dummies = pd.get_dummies(nominal_data)
dummies.sample() # pandas 会自动帮你命名
# 每个名义变量生成的虚拟变量中,需要各丢弃一个,这里以丢弃C为例
dummies.drop(columns=['C'], inplace=True)
dummies.sample()

在这里插入图片描述

# 将结果与原数据集拼接
results = pd.concat(objs=[df, dummies], axis='columns') # 按照列来合并
results.sample(3)
# 对名义变量 style 的处理可自行尝试

在这里插入图片描述

# 再次建模
lm = ols('price ~ area + bedrooms + bathrooms + A + B', data=results).fit()
lm.summary()

在这里插入图片描述

# 自定义方差膨胀因子的检测公式
def vif(df, col_i):
"""
df: 整份数据
col_i:被检测的列名
"""
cols = list(df.columns)
cols.remove(col_i)
cols_noti = cols
formula = col_i + '~' + '+'.join(cols_noti)
r2 = ols(formula, df).fit().rsquared
return 1. / (1. - r2)
test_data = results[['area', 'bedrooms', 'bathrooms', 'A', 'B']]
for i in test_data.columns:
print(i, '\t', vif(df=test_data, col_i=i))
# 发现 bedrooms 和 bathrooms 存在强相关性,可能这两个变量是解释同一个问题
# 果然,bedrooms 和 bathrooms 这两个变量的方差膨胀因子较高,
# 也印证了方差膨胀因子大多成对出现的原则,这里我们丢弃膨胀因子较大的 bedrooms 即可
lm = ols(formula='price ~ area + bathrooms + A + B', data=results).fit()
lm.summary()

在这里插入图片描述

# 再次进行多元共线性检测
test_data = df[['area', 'bathrooms']]
for i in test_data.columns:
print(i, '\t', vif(df=test_data, col_i=i))

在这里插入图片描述

二、用Excel重做上面的多元线性回归,求解回归方程

1.数据分析功能的添加
先打开excel,点击左下角的选项,点开加载项–转到
在这里插入图片描述
可用加载宏里面勾选后面三个
在这里插入图片描述
在这里插入图片描述
选择回归
在这里插入图片描述
如图设定XY
在这里插入图片描述
在这里插入图片描述
字段Multiple R代表复相关系数R,也就是R2的平方根,又称相关系数,用来衡量自变量x与y之间的相关程度的大小。R Square是复测定系数,也就是相关系数R的平方。Adjusted R Square是调整后的复测定系数R2。标准误差用来衡量拟合程度的大小,也用于计算与回归相关的其它统计量,此值越小,说明拟合程度越好。观察值是用于估计回归方程的数据的观察值个数,本次数据集共有20条数据,所以观察值为20。Coefficients为常数项。设因变量房屋售价price为y,自变量面积area为x1,bedrooms为x2,bathrooms为x3,可以得出
y=10072.11+345.911x1-2925.81x2+7345.392x3

三、用机器学习库Sklearn库重做上面的多元线性回归,对三者的结果进行对比分析。

直接求解
在这里插入图片描述

new_data=data.iloc[:,1:]#除掉house_id这一列
new_data.head()

在这里插入图片描述

new_data.corr()#相关系数矩阵,只统计数值列

在这里插入图片描述

"""取are、bedrooms和bathroom作为X,price为Y求线性回归。"""
x_data = new_data.iloc[:, 1:4] #are、bedrooms、bathroom对应列
y_data = new_data.iloc[:, -1] #price对应列
print(x_data, y_data, len(x_data))

在这里插入图片描述

# 应用模型
model = linear_model.LinearRegression()
model.fit(x_data, y_data)
print("回归系数:", model.coef_)
print("截距:", model.intercept_)
print('回归方程: price=',model.coef_[0],'*area +',model.coef_[1],'*bedrooms +',model.coef_[2],'*bathromms +',model.intercept_)

在这里插入图片描述
数据清洗后求解

new_data_Z=new_data.iloc[:,0:]
new_data_IQR=new_data.iloc[:,0:]
def outlier_test(data, column, method=None, z=2):
    
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    
    if method == 'z':
        
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)    
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower

outlier, upper, lower = outlier_test(data=new_data_Z, column='price', method='z')
outlier.info(); outlier.sample(5)

#这里简单丢弃即可
new_data_Z.drop(index=outlier.index, inplace=True)

在这里插入图片描述

outlier, upper, lower = outlier_test(data=new_data_IQR, column='price')
outlier.info(); outlier.sample(5)

# 这里简单的丢弃即可
new_data_IQR.drop(index=outlier.index, inplace=True)

在这里插入图片描述

print("原数据相关性矩阵")
new_data.corr()

在这里插入图片描述

print("z方法处理的相关性矩阵")
new_data_Z.corr()

在这里插入图片描述

print("IQR方法处理的数据相关性矩阵")
new_data_IQR.corr()

在这里插入图片描述

x_data = new_data_Z.iloc[:, 1:4]
y_data = new_data_Z.iloc[:, -1]
# 应用模型
model = linear_model.LinearRegression()
model.fit(x_data, y_data)
print("回归系数:", model.coef_)
print("截距:", model.intercept_)
print('回归方程: price=',model.coef_[0],'*area +',model.coef_[1],'*bedrooms +',model.coef_[2],'*bathromms +',model.intercept_)

在这里插入图片描述

x_data = new_data_IQR.iloc[:, 1:4]
y_data = new_data_IQR.iloc[:, -1]
# 应用模型
model = linear_model.LinearRegression()
model.fit(x_data, y_data)
print("回归系数:", model.coef_)
print("截距:", model.intercept_)
print('回归方程: price=',model.coef_[0],'*area +',model.coef_[1],'*bedrooms +',model.coef_[2],'*bathromms +',model.intercept_)

在这里插入图片描述
数据总结
不做数据处理得到的回归方程: price= 345.911018840024 *area + -2925.806324666705 *bedrooms + 7345.391713693825 *bathromms + 10072.107046726742

Z方式清理数据后得到的回归方程:price= 226.4211697383351 *area + 49931.50311720713 *bedrooms -12224.71724496588 *bathromms + 64356.04135007458

IQR方式清理数据后得到的回归方程:price= 242.6111551782956 *area + 41547.43068790577 *bedrooms -6415.78250090158 *bathromms + 58018.13845504692

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值