媒质的磁化

 我们定义磁矢 \vec m=I \vec S

\vec T=\vec m \times \vec B

不显磁性,经过磁化之后,开始显磁性

同时也会有磁化电流产生

\vec J_{m}=\nabla \times \vec M,\vec K_{m}=\vec M \times \vec e_{n}

我们定义 磁化强度\vec M

\vec M=lim_{\Delta v \to 0}\frac{\sum \vec m_{i}}{\Delta v}


一般形式的安培环路定律

\oint_{l}\vec B \cdot d\vec l=\mu_0 (\sum_{k=1}^{n}I_{k}+\int_{S}\vec J_{m}\cdot d \vec S)=\mu_0 (\sum_{k=1}^{n}I_{k}+\oint_{l}\vec M \cdot d \vec S)

我们经过整理可以得到

\oint_{l}(\frac{\vec B}{\mu_0}-\vec M)\cdot d \vec l= \sum_{k=1}^{n}I_{k}

我们定义\vec H=\frac{\vec B}{\mu_0}- \vec M

我们就可以得到

\oint_{l}\vec H \cdot d \vec l=\sum_{k=1}^{n}I_{k}

如果是各向同性的线性介质

我们有\vec M=X_{m} \vec HX_{m}称为磁化率

\vec B=\mu_{0} \vec H +\mu_0 X_{m} \vec H=\mu_0(1+X_{m})\vec H

我们令\vec B=\mu \vec H

\mu=\mu_0(1+X_{m})=\mu_0 \mu_{r}


恒定磁场的基本方程 

磁通量连续性方程

 \oint_{s}\vec B \cdot d\vec S=0

恒定磁场的基本方程

\oint_s \vec B\cdot d\vec S=0

\oint_{l} \vec H \cdot d \vec l=\int_{s} \vec J \cdot d\vec S

这是积分形式

\nabla \cdot \vec B=0

\nabla \times \vec H=\vec J

微分形式


 

分界面上的衔接条件

H_{2t}-H_{1t}=K

B_{2n}=B_{1n}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值