电力设备电磁设计原理(一)

本篇为西安交通大学本科课程《电力设备设计原理》的笔记。

本篇为这一单元的第一篇笔记。下一篇传送门

电磁场设计的目标和原则

耐复杂应力性、长期稳定性、协同性、经济性和安全性。

电磁场设计的控制方程和本构方程

麦克斯韦方程组和本构方程

麦克斯韦方程组含有四个定律:安培-麦克斯韦定律法拉第定律高斯磁场定律高斯电场定律

麦克斯韦方程组的积分形式为:
∮ l H ⋅ d l = ∫ S ( J + ∂ D ∂ t )   d S ∮ l E ⋅ d l = − ∫ S ∂ B ∂ t   d S ∮ S B ⋅ d S = 0 ∮ S D ⋅ d S = Q \oint_l \bm{H} \cdot d\bm{l}=\int_S(\bm{J}+\frac{\partial \bm{D}}{\partial t})\,d\bm{S}\\ \oint_l \bm{E} \cdot d\bm{l}=-\int_S \frac{\partial \bm{B}}{\partial t}\,d\bm{S}\\ \oint_S \bm{B}\cdot d\bm{S}=0\\ \oint_S \bm{D}\cdot d\bm{S}=Q lHdl=S(J+tD)dSlEdl=StBdSSBdS=0SDdS=Q

  1. 一式为安培-麦克斯韦定律全电流定律,表明磁场由传导电流和变化的电场产生。
  2. 二式为推广的法拉第电磁感应定律,表明变化的磁场可以产生电场。
  3. 三式为高斯磁场定律,表明磁场是无头无尾的闭合曲线。
  4. 四式为高斯电场定律,表明电场由电荷产生。

利用高斯散度定理和斯托克斯旋度定理,麦克斯韦方程组的微分形式为:
∇ × H = J + ∂ D ∂ t ∇ × E = − ∂ B ∂ t ∇ ⋅ B = 0 ∇ ⋅ D = q \nabla\times\bm{H}=\bm{J}+\frac{\partial \bm{D}}{\partial t}\\ \nabla\times\bm{E}=-\frac{\partial \bm{B}}{\partial t}\\ \nabla \cdot\bm{B}=0\\ \nabla\cdot\bm{D}=q ×H=J+tD×E=tBB=0D=q

意义和积分形式是一样的,只不过积分形式描述回路或闭合面上的整体情况,而微分形式描述的是各个点及其邻域的情况,反映的是局部分布。

当有媒质存在时,麦克斯韦方程组属于欠定方程组,需要三个描述媒质特性的方程,称为本构方程
D = ϵ E B = μ H J = σ E \bm{D}=\epsilon\bm{E}\\ \bm{B}=\mu\bm{H}\\ \bm{J}=\sigma\bm{E} D=ϵEB=μHJ=σE

电磁场作用下媒质会出现极化或磁化现象。引入电极化强度 P \bm{P} P和磁化磁化强度 M \bm{M} M
D = ϵ 0 E + E = ϵ 0 ϵ r E B = μ 0 H + M = μ 0 μ r H \bm{D}=\epsilon_0\bm{E}+\bm{E}=\epsilon_0\epsilon_r\bm{E}\\ \bm{B}=\mu_0\bm{H}+\bm{M}=\mu_0\mu_r\bm{H} D=ϵ0E+E=ϵ0ϵrEB=μ0H+M=μ0μrH

如果电场或磁场不随时间变化或随时间变化德很慢,方程组中的 ∂ D ∂ t \frac{\partial \bm{D}}{\partial t} tD ∂ B ∂ t \frac{\partial \bm{B}}{\partial t} tB可以忽略,这时候就简化为电准静态场或磁准静态场。

麦克斯韦方程组的边界条件

考虑两种不同的媒质, ϵ 1 , σ 1 , μ 1 \epsilon_1,\sigma_1,\mu_1 ϵ1,σ1,μ1是左边媒质的参数; ϵ 2 , σ 2 , μ 2 \epsilon_2,\sigma_2,\mu_2 ϵ2,σ2,μ2是右边媒质的参数; e n \bm{e}_n en是分界面上的法向单位向量,方向从左指向右。

  1. 静电场中,分界面的衔接条件:
    { e n ⋅ ( D 1 − D 2 ) = q s e n × ( E 1 − E 2 ) = 0 \left\{ \begin{array}{} \bm{e}_n\cdot(\bm{D}_1-\bm{D}_2)=q_s \\ \bm{e}_n\times(\bm{E}_1-\bm{E}_2)=0 \end{array} \right. {en(D1D2)=qsen×(E1E2)=0

  2. 恒定电场中,分界面的衔接条件:
    { e n ⋅ ( J 1 − J 2 ) = 0 e n × ( E 1 − E 2 ) = 0 \left\{ \begin{array}{} \bm{e}_n\cdot(\bm{J}_1-\bm{J}_2)=0 \\ \bm{e}_n\times(\bm{E}_1-\bm{E}_2)=0 \end{array} \right. {en(J1J2)=0en×(E1E2)=0

  3. 恒定磁场中,分界面的衔接条件:
    { e n ⋅ ( B 1 − B 2 ) = 0 e n × ( H 1 − H 2 ) = J s \left\{ \begin{array}{} \bm{e}_n\cdot(\bm{B}_1-\bm{B}_2)=0 \\ \bm{e}_n\times(\bm{H}_1-\bm{H}_2)=J_s \end{array} \right. {en(B1B2)=0en×(H1H2)=Js

总结: E \bm{E} E的切向方向、 J \bm{J} J的法向方向、 B \bm{B} B的法向方向是连续的。若分界面存在自由电荷或是传导电流, D \bm{D} D的法向方向和 H \bm{H} H的切向方向均不连续。

场域的边界面 S \bm{S} S上有三种边界条件:

  1. 第一类边界条件:给定边界面 S \bm{S} S上的电动势值。
    ϕ ∣ s = f 1 ( S ) \phi|_s=f_1(\bm{S}) ϕs=f1(S)
  2. 第二类边界条件:给定边界面 S \bm{S} S上的电动势法相的导数值。
    ∂ ϕ ∂ n ∣ s = f 2 ( S ) \frac{\partial\phi}{\partial n}\bigg|_s=f_2(\bm{S}) nϕ s=f2(S)
  3. 第三类边界条件:给定边界面 S \bm{S} S上的电动势值和电动势法相的导数值的线性组合值。
    ϕ ∣ s + B ∂ ϕ ∂ n ∣ s = f 3 ( S ) \phi|_s+B\frac{\partial\phi}{\partial n}\bigg|_s=f_3(\bm{S}) ϕs+Bnϕ s=f3(S)

典型结构电场分析与设计

交流和直流电场的分析方法

对安培-麦克斯韦定律两边同时取散度:
∇ ⋅ ( ∇ × H ) = ∇ ⋅ J + ∂ ( ∇ ⋅ D ) ∂ t \nabla\cdot(\nabla\times\bm{H})=\nabla\cdot\bm{J}+\frac{\partial (\nabla\cdot\bm{D})}{\partial t} (×H)=J+t(D)

因为任意向量旋度的散度恒为零, ∇ ⋅ ( ∇ × H ) ≡ 0 \nabla\cdot(\nabla\times\bm{H})\equiv0 (×H)0,可得电荷守恒定律:
∇ ⋅ J = ∂ ( ∇ ⋅ D ) ∂ t \nabla\cdot\bm{J}=\frac{\partial (\nabla\cdot\bm{D})}{\partial t} J=t(D)

这意味着一定体积内,一定时间内,电荷的变化量一定等于流入该体积内的净电荷。

电场变化足够平滑,可重组为全电流散度方程:
∇ ⋅ ( J + ∂ D ∂ t ) = 0 \nabla\cdot(\bm{J}+\frac{\partial \bm{D}}{\partial t})=0 (J+tD)=0

带入本构方程可得:
∇ ⋅ ( σ E + ∂ ( ϵ 0 ϵ r E ) ∂ t ) = 0 \nabla\cdot(\sigma\bm{E}+\frac{\partial (\epsilon_0\epsilon_r\bm{E})}{\partial t})=0 (σE+t(ϵ0ϵrE))=0

带入电动势方程, E = − ∇ ϕ \bm{E}=-\nabla\phi E=ϕ,得到:
∇ ⋅ ( σ ∇ ϕ + ∂ ( ϵ 0 ϵ r ∇ ϕ ) ∂ t ) = 0 \nabla\cdot(\sigma\nabla\phi+\frac{\partial (\epsilon_0\epsilon_r\nabla\phi)}{\partial t})=0 (σϕ+t(ϵ0ϵrϕ))=0

交流电压下的电场分布和分析方法

工频交流电压作用下电介质材料的电场以正弦变化。工频交流电压 ϕ a p p l \phi_{appl} ϕappl可以表示为相量形式:
ϕ a p p l ( x , y , z , t ) = ϕ ( x , y , z , t ) e i ω t \phi_{appl}(x,y,z,t)=\phi(x,y,z,t)e^{i\omega t} ϕappl(x,y,z,t)=ϕ(x,y,z,t)et

带入全电流散度方程,得到:
∇ ⋅ { σ ∇ ( ϕ e i ω t ) + ∂ [ ϵ 0 ϵ r ∇ ( ϕ e i ω t ) ] ∂ t } = 0 \nabla\cdot\{\sigma\nabla(\phi e^{i\omega t})+\frac{\partial [\epsilon_0\epsilon_r\nabla(\phi e^{i\omega t})]}{\partial t}\}=0 {σ(ϕet)+t[ϵ0ϵr(ϕet)]}=0

可以简化为时谐静电方程:
∇ ⋅ [ ( ϵ 0 ϵ r − i σ ω ) ∇ ϕ ] = 0 \nabla \cdot [(\epsilon_0\epsilon_r-i\frac{\sigma}{\omega})\nabla\phi]=0 [(ϵ0ϵriωσ)ϕ]=0

其中, ϵ 0 ϵ r − i σ ω \epsilon_0\epsilon_r-i\frac{\sigma}{\omega} ϵ0ϵriωσ是复数的介电常数。

一般 i σ ω i\frac{\sigma}{\omega} iωσ影响很小,那么上式可以化简为:
∇ ⋅ ( ϵ 0 ϵ r ∇ ϕ ) = 0 \nabla \cdot (\epsilon_0\epsilon_r\nabla\phi)=0 (ϵ0ϵrϕ)=0

说明交流情况下,电场分布依赖于介电常数。

直流电压下的电场分布和分析方法

直流到达稳态时候,电压与电场均不随时间变化,此时有:
∂ ( ϵ 0 ϵ r ∇ ϕ ) ∂ t = 0 \frac{\partial (\epsilon_0\epsilon_r\nabla\phi)}{\partial t}=0 t(ϵ0ϵrϕ)=0

那么全电流散度方程可以化简为:
∇ ⋅ ( σ ∇ ϕ ) = 0 \nabla \cdot(\sigma\nabla\phi)=0 (σϕ)=0

说明直流情况下,电场分布依赖于电导率。

交直流叠加电压下的电场分布和分析方法

可以使用傅里叶展开,将其表示为直流成分、工频交流成分和高次谐波成分。

空间电荷形成电场分布的分析方法

电介质材料的电荷陷阱会捕获电荷,被捕获的电荷会停留在一个位置很长时间,形成空间电荷积累,可以使用高斯电荷方程 ∇ ⋅ ( ϵ 0 ϵ r E ) = q \nabla\cdot(\epsilon_0\epsilon_r\bm{E})=q (ϵ0ϵrE)=q来计算空间电荷形成的电场,然后叠加即可。

平板结构的电场分析

假设有一个多层介质平板结构,一共 n n n层,可知两极板之间的电压 U U U就是各个层上的电压之和,也就是 U 1 + U 2 + . . . + U n = U U_1+U_2+...+U_n=U U1+U2+...+Un=U,然后易得: E 1 d 1 + E 2 d 2 + . . . + E n d n = U E_1d_1+E_2d_2+...+E_nd_n=U E1d1+E2d2+...+Endn=U

在这里插入图片描述

交流情况下

交流情况下是根据电位移矢量 D D D的连续性原理,可得:
E 1 ϵ 1 = E 2 ϵ 2 = . . . = E n ϵ n E_1\epsilon_1=E_2\epsilon_2=...=E_n\epsilon_n E1ϵ1=E2ϵ2=...=Enϵn

带入上述式子可得第i层介质中的电场强度:
E i = U ϵ i ( d 1 ϵ 1 + d 2 ϵ 2 + . . . + d n ϵ n )   ,   i = 1 , 2 , . . . , n E_i=\frac{U}{\epsilon_i(\frac{d_1}{\epsilon_1}+\frac{d_2}{\epsilon_2}+...+\frac{d_n}{\epsilon_n})}\, ,\, i=1,2,...,n Ei=ϵi(ϵ1d1+ϵ2d2+...+ϵndn)U,i=1,2,...,n

可见,交流情况下各层电场强度和介电常数呈现反比。

直流情况下

直流情况下是根据电流密度 J J J的连续性原理,可得:
E 1 σ 1 = E 2 σ 2 = . . . = E n σ n E_1\sigma_1=E_2\sigma_2=...=E_n\sigma_n E1σ1=E2σ2=...=Enσn

带入上述式子可得第i层介质中的电场强度:
E i = U σ i ( d 1 σ 1 + d 2 σ 2 + . . . + d n σ n )   ,   i = 1 , 2 , . . . , n E_i=\frac{U}{\sigma_i(\frac{d_1}{\sigma_1}+\frac{d_2}{\sigma_2}+...+\frac{d_n}{\sigma_n})}\, ,\, i=1,2,...,n Ei=σi(σ1d1+σ2d2+...+σndn)U,i=1,2,...,n

可见,直流情况下各层电场强度和电导率呈现反比。

同轴结构的电场分析

假设有一个多层介质的同轴结构,一共 n n n层。对于最内层导体,其外径为 r 1 r_1 r1,对于最外层导体,其内径为 r n + 1 r_{n+1} rn+1;对于每一层而言,其外径为 r i   ,   i = 2 , 3 , . . . , n + 1 r_i\,,\,i=2,3,...,n+1 ri,i=2,3,...,n+1

在这里插入图片描述

首先计算交流情况:由高斯定律可得,低i层介质的电场分布为:
E ( r ) = C 2 π r ϵ E(r)=\frac{C}{2\pi r \epsilon} E(r)=2πC

其中C为常数。

对于电场积分可得每一层的电压:
U i = C 2 π r ϵ i ln ⁡ ( r i + 1 r i )   ,   i = 1 , 2 , . . . , n U_i=\frac{C}{2\pi r \epsilon_i}\ln(\frac{r_{i+1}}{r_i})\,,\,i=1,2,...,n Ui=2πrϵiCln(riri+1),i=1,2,...,n

而两个电极之间的总电压为U,等于各个层的电压之和,可以得到:
C 2 π = U 1 ϵ 1 ln ⁡ ( r 2 r 1 ) + 1 ϵ 2 ln ⁡ ( r 3 r 2 ) + . . . + 1 ϵ n ln ⁡ ( r n + 1 r n ) \frac{C}{2\pi}=\frac{U}{\frac{1}{\epsilon_1}\ln(\frac{r_2}{r_1})+\frac{1}{\epsilon_2}\ln(\frac{r_3}{r_2})+...+\frac{1}{\epsilon_n}\ln(\frac{r_{n+1}}{r_n})} 2πC=ϵ11ln(r1r2)+ϵ21ln(r2r3)+...+ϵn1ln(rnrn+1)U

带入电场的分布表达式,可以得到不同介质层的电场分布:
E i ( r ) = U r ε i [ 1 ε 1 ln ⁡ ( r 2 r 1 ) + 1 ε 2 ln ⁡ ( r 3 r 2 ) + ⋯ + 1 ε n ln ⁡ ( r n + 1 r n ) ] E_{i}\left(r\right)=\frac{U}{r\varepsilon_{i}\left[\frac{1}{\varepsilon_{1}}\ln\left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{\varepsilon_{2}}\ln\left(\frac{r_{3}}{r_{2}}\right)+\cdots+\frac{1}{\varepsilon_{n}}\ln\left(\frac{r_{n+1}}{r_{n}}\right)\right]} Ei(r)=rεi[ε11ln(r1r2)+ε21ln(r2r3)++εn1ln(rnrn+1)]U

还以算出第i层介质中的最大场强:
E i m a x = U r i ε i [ 1 ε 1 ln ⁡ ( r 2 r 1 ) + 1 ε 2 ln ⁡ ( r 3 r 2 ) + ⋯ + 1 ε n ln ⁡ ( r n + 1 r n ) ] E_{imax}=\frac{U}{r_{i}\varepsilon_{i}\left[\frac{1}{\varepsilon_{1}}\ln\left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{\varepsilon_{2}}\ln\left(\frac{r_{3}}{r_{2}}\right)+\cdots+\frac{1}{\varepsilon_{n}}\ln\left(\frac{r_{n+1}}{r_{n}}\right)\right]} Eimax=riεi[ε11ln(r1r2)+ε21ln(r2r3)++εn1ln(rnrn+1)]U

对于直流情况,推导是类似的,可以得到不同介质层的电场分布:
E i ( r ) = U r σ i [ 1 σ 1 ln ⁡ ( r 2 r 1 ) + 1 σ 2 ln ⁡ ( r 3 r 2 ) + ⋯ + 1 σ n ln ⁡ ( r n + 1 r n ) ] E_{i}(r)=\frac{U}{r\sigma_{i}\left[\frac{1}{\sigma_{1}}\ln\left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{\sigma_{2}}\ln\left(\frac{r_{3}}{r_{2}}\right)+\cdots+\frac{1}{\sigma_{n}}\ln\left(\frac{r_{n+1}}{r_{n}}\right)\right]} Ei(r)=rσi[σ11ln(r1r2)+σ21ln(r2r3)++σn1ln(rnrn+1)]U

还以算出第i层介质中的最大场强:
E i m a x = U r i σ i [ 1 σ 1 ln ⁡ ( r 2 r 1 ) + 1 σ 2 ln ⁡ ( r 3 r 2 ) + ⋯ + 1 σ n ln ⁡ ( r n + 1 r n ) ] E_{imax}=\frac{U}{r_{i}\sigma_{i}\left[\frac{1}{\sigma_{1}}\ln\left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{\sigma_{2}}\ln\left(\frac{r_{3}}{r_{2}}\right)+\cdots+\frac{1}{\sigma_{n}}\ln\left(\frac{r_{n+1}}{r_{n}}\right)\right]} Eimax=riσi[σ11ln(r1r2)+σ21ln(r2r3)++σn1ln(rnrn+1)]U

不均匀电场解析计算的分析

通过复变函数的保角变换,可以转换复杂电场为简单电场计算。

z平面是原来不均匀电场所在的平面,而w平面是进行保角变换之后的平面

w = z 2 w=z^2 w=z2变换式所代表的电场

在这里插入图片描述

w = z 2 = ( x + j y ) 2 = ( x 2 − y 2 ) + j 2 x y = u + j v w=z^{2}=\left(x+jy\right)^{2}=\left(x^{2}-y^{2}\right)+j2xy=u+jv w=z2=(x+jy)2=(x2y2)+j2xy=u+jv

u = x 2 − y 2 = k u=x^2-y^2=k u=x2y2=k v = 2 x y = c v=2xy=c v=2xy=c,在z平面上为两组相互相交的双曲线族,如果让 v = c v=c v=c代表等位线,那么 u = k u=k u=k就是电力线,代表的是一个内角电极产生的电场。

假设两个电极为 v = c 1 v=c_1 v=c1 v = c 2 v=c_2 v=c2,电压为U,在w平面上就是平板电场,那么在z平面的电场强度是:
E z = ∣ d w d z ∣ E w = 2 z ⋅ E w = U c 2 − c 1 ⋅ 2 x 2 + y 2 E_{z}=\left|\frac{dw}{dz}\right|E_{w}=2z\cdot E_{w}=\frac{U}{c_{2}-c_{1}}\cdot2\sqrt{x^{2}+y^{2}} Ez= dzdw Ew=2zEw=c2c1U2x2+y2

假设两个电极的形状是双曲线,方程为 2 x y = 2 2xy=2 2xy=2 2 x y = 0 2xy=0 2xy=0,外加电压为U,那么可以求出几个点的电场强度值:

  1. 在A点(1,1),有 E z = U 2 − 0 ⋅ 2 1 2 + 1 2 = 2 U E_{z}=\frac{U}{2-0}\cdot2\sqrt{1^{2}+1^{2}}=\sqrt{2}U Ez=20U212+12 =2 U
  2. 在B点(0,0),有 E z = U 2 − 0 ⋅ 2 0 + 0 = 0 E_{z}=\frac{U}{2-0}\cdot2\sqrt{0+0}=0 Ez=20U20+0 =0
  3. 在C点(0.5,0.5),有 E z = U 2 − 0 ⋅ 2 0. 5 2 + 0. 5 2 = U 2 E_{z}=\frac{U}{2-0}\cdot2\sqrt{0.5^{2}+0.5^{2}}=\frac{U}{\sqrt{2}} Ez=20U20.52+0.52 =2 U

w = z 1 2 w=z^\frac{1}{2} w=z21变换式所代表的电场

在这里插入图片描述

z = w 2 = ( u + j v ) 2 = ( u 2 − v 2 ) + j 2 u v = x + j v z=w^{2}=\left(u+jv\right)^{2}=\left(u^{2}-v^{2}\right)+j2uv=x+jv z=w2=(u+jv)2=(u2v2)+j2uv=x+jv

即:
x = u 2 − v 2 , y = 2 u v x=u^{2}-v^{2},y=2uv x=u2v2,y=2uv

带入上式消去u或是v,得到:
4 u 2 ( u 2 − x ) = y 2 , 4 v 2 ( v 2 + x ) = y 2 4u^{2}(u^{2}-x)=y^{2},4v^{2}(v^{2}+x)=y^{2} 4u2(u2x)=y2,4v2(v2+x)=y2

左边的式子代表开口向左的一族抛物线,右边的式子代表开口向右的一族抛物线。

可见x和y代表的是两组互相正交的共焦点抛物线,选定一组代表等位线,那另一组就是电力线。

设两个电极取v=1和v=0,即 4 ( 1 + x ) = y 2 4\left(1+x\right)=y^{2} 4(1+x)=y2 y = 0 ( x > 0 ) y=0\left(x>0\right) y=0(x>0),电压差为U,那么可以算出电极定点处的电场强度:
E z = E w ∣ d w d z ∣ = E w ∣ 1 2 z ∣ = U v 2 − v 1 ⋅ 1 2 ( x 2 + y 2 ) − 1 4 E_{z}=E_{w}\left|\frac{dw}{dz}\right|=E_{w}\left|\frac{1}{2\sqrt{z}}\right|=\frac{U}{v_{2}-v_{1}}\cdot\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{4}} Ez=Ew dzdw =Ew 2z 1 =v2v1U21(x2+y2)41

带入电极的v,然后带入顶点坐标(-1,0),得到:
E z = U 1 − 0 ⋅ 1 2 [ ( − 1 ) 2 + 0 2 ] − 1 4 = U 2 E_{z}=\frac{U}{1-0}\cdot\frac{1}{2}[(-1)^{2}+0^{2}]^{-\frac{1}{4}}=\frac{U}{2} Ez=10U21[(1)2+02]41=2U

而如果带入顶点(0,0)的话,会得到无穷大的场强,可以说明是尖端就是电场的聚集区。实际中边缘会有一定的曲率半径,所以场强不会是无穷大。

w = ln ⁡ ( z ) w=\ln(z) w=ln(z)变换式所代表的电场

在这里插入图片描述

令:
z = r e j φ z=re^{j\varphi} z=rejφ
那么:
w = ln ⁡ r e j φ = ln ⁡ r + j φ = u + j v w=\ln re^{j\varphi}=\ln r+j\varphi=u+jv w=lnrejφ=lnr+jφ=u+jv
可得:
u = ln ⁡ r , v = φ u=\ln r,v=\varphi u=lnr,v=φ

这里面的 r r r φ \varphi φ是极坐标中的变量。实际上,在原平面z中,可以是以u=c为等位线,v=c为电力线,这样就是和点电荷发出的电场一样了。

成夹角的二极板间的电场变换

在这里插入图片描述

设:A极板和B极板如图所示,他们的夹角是 α π \alpha \pi απ,顶点O处不连续,两个极板之间有一个很小的间隙,两极板之间的电压是U。

利用以下的变换式:
z = w α z=w^\alpha z=wα

把原平面z点A的坐标写成极坐标形式,带入:
z = r e j α π z=re^{j\alpha \pi} z=rejαπ

则在新的平面w上的相应点为:
w = z 1 α = ( r e j α π ) 1 α = r 1 α ⋅ e j π = r 1 α ( cos ⁡ π + j sin ⁡ π ) = − r 1 α w=z^{\frac{1}{\alpha}}=\left(r\mathrm{e}^{j\alpha\pi}\right)^{\frac{1}{\alpha}}=r^{\frac{1}{\alpha}}\cdot\mathrm{e}^{j\pi}=r^{\frac{1}{\alpha}}\left(\cos\pi+j\sin\pi\right)=-r^{\frac{1}{\alpha}} w=zα1=(rejαπ)α1=rα1e=rα1(cosπ+jsinπ)=rα1

可见这个变换后的点A’是在负的实轴上。

而原平面的点B,极坐标带入可得到:
w = r 1 α w=r^{\frac{1}{\alpha}} w=rα1

可见这个变换后的点B’是在正的实轴上,和A’刚好关于原点对称。z平面上的弧线 A B ⌢ \overset{\frown}{AB} AB对应于w平面上的 A ′ B ′ ⌢ \overset{\frown}{A'B'} AB。而z平面上的线段BO对应于w平面上的线段B’O,z平面上的线段OA对应于w平面上的线段OA’。注意到w平面的原点也是不连续的。

下面可以计算出:
d z d w = α w α − 1 = α w − ( 1 − a ) = α w − γ \frac{dz}{dw}=\alpha w^{\alpha-1}=\alpha w^{-(1-a)}=\alpha w^{-\gamma} dwdz=αwα1=αw(1a)=αwγ

然后可以根据公式 E z = E w ∣ d w d z ∣ E_{z}=E_{w}\left|\frac{dw}{dz}\right| Ez=Ew dzdw 计算出原来平面的电场强度。

  • 31
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值