电力设备电磁设计原理(二)

本篇为西安交通大学本科课程《电力设备设计原理》的笔记。

本篇为这一单元的第二篇笔记。上一篇传送门

极不均匀电场的分析

定义电场的不均匀系数: ξ = E m a x E a v e \xi=\frac{E_{max}}{E_{ave}} ξ=EaveEmax,也就是最大电场值除以平均电场的值。球间隙是典型的稍不均匀电场( ξ < 2 \xi<2 ξ<2),而高压电线之间的空气绝缘和针——板电极结构是极不均匀电场( ξ > 4 \xi>4 ξ>4)。

下图显示出了三种典型的电场分布。

在这里插入图片描述

稍不均匀电场特点和均匀电场相类似,在间隙击穿之前看不到放电现象。而在极不均匀电场中,在间隙击穿之前的高场强区域会出现蓝紫色的晕光,称之为电晕。

减小电场畸变的方法

  1. 改变电极的形状:如果增加了距离或者是曲面半径等参数,电场就会得到均匀。增大点击曲率半径,改善电极边缘效应以及优化电极外形是几种常用的方法。

    下图为通过改变电极形状来调整电场分布,上排为改善前,下排为改善后。
    在这里插入图片描述

  2. 过增设中间电极改善电极间电场分布:电容式套管就是这种方法,它主要依靠电容芯子来改善电场的分布,

  3. 加屏蔽环改善电极间电场分布:通过在高压端引入均压环或屏蔽环,可以增大高压电极对本体的电容,因此高压设备对地电容电流得到补偿,改善了电压的分布。

  4. 选用通过不同(梯度)介质材料来改善电场分布:多层电介质串联时候,电通密度不变,即 D = ϵ 1 E 1 = ϵ 2 E 2 = . . . D=\epsilon_1E_1=\epsilon_2E_2=... D=ϵ1E1=ϵ2E2=...,可以通过调整介质的介电常数来改变电场分布。

  5. 通过电阻(半导体)来改善电场分布:在电极上连接一层半导体材料,并将其深入极间电场,从而达到调整电场的效果。

  6. 通过外施电压强制调整电场。

典型结构的磁场分析与设计

磁场分析方法

恒定直流产生的静磁场分析方法

直流电机中的定子、直流断路器中导体都可以使用静磁场分析方法。

自由空间中静磁场分析方法

静磁学方程包括高斯磁场定律和麦克斯韦-安培定律。
{ ∇ ⋅ B = 0 ∇ × B = μ 0 J \begin{cases} \nabla \cdot \boldsymbol{B}=0 \\\\ \nabla \times \boldsymbol{B}=\mu_0 \boldsymbol{J} \end{cases} B=0×B=μ0J

这还说明不存在磁荷,磁通的密度 B \boldsymbol{B} B呈现出螺旋形,它是一个无旋场。可以引入矢量磁势 A \boldsymbol{A} A,因为任何矢量的旋度的散度恒等于0,也就是: ∇ ⋅ ( ∇ × A ) = 0 \nabla \cdot (\nabla \times \boldsymbol{A})=0 (×A)=0,而且有关系: B = ∇ × A \boldsymbol{B}=\nabla \times \boldsymbol{A} B=×A

亥姆霍兹定理指出,矢量场由其散度和旋度所定义,可以采用库伦规范来选择矢量磁势散度 ∇ ⋅ A = 0 \nabla \cdot \boldsymbol{A}=0 A=0.使用矢量磁势,就可以将自由空间中的静磁学方程合并成一个方程:
∇ × B = μ 0 J ⇒ ∇ × ( ∇ × A ) = μ 0 J \nabla \times \boldsymbol{B}=\mu_0\boldsymbol{J} \Rightarrow \nabla\times(\nabla\times\boldsymbol{A})=\mu_0\boldsymbol{J} ×B=μ0J×(×A)=μ0J

根据矢量的法则,可得: ∇ × ( ∇ × A ) = ∇ ( ∇ ⋅ A ) − ∇ 2 A \nabla\times(\nabla\times\boldsymbol{A})=\nabla(\nabla \cdot\boldsymbol{A})-\nabla^2\boldsymbol{A} ×(×A)=(A)2A,而根据库伦规范,右边第一项为,可以得到矢量泊松方程形式:
∇ 2 A = − μ 0 J \nabla^2\boldsymbol{A}=-\mu_0\boldsymbol{J} 2A=μ0J

线性各向同性磁性材料中静磁场的分析方法

磁通密度 B \boldsymbol{B} B和磁场强度 H \boldsymbol{H} H以及磁化矢量场 M \boldsymbol{M} M的关系式为: B = μ 0 H + M \boldsymbol{B}=\mu_0\boldsymbol{H}+\boldsymbol{M} B=μ0H+M。磁化矢量场可以视为能产生等效磁场的电流密度 J m \boldsymbol{J}_m Jm
∇ × M = μ 0 J m \nabla\times\boldsymbol{M}=\mu_0\boldsymbol{J}_m ×M=μ0Jm

将材料的效应带入自由空间中的静磁学方程,可得:
∇ × B = μ 0 ( J + J m ) = μ 0 J + ∇ × M ⇒ ∇ × ( B − M ) = μ 0 J \nabla\times\boldsymbol{B}=\mu_0(\boldsymbol{J}_+\boldsymbol{J}_m)=\mu_0\boldsymbol{J}+\nabla\times\boldsymbol{M} \Rightarrow \nabla \times (\boldsymbol{B}-\boldsymbol{M})=\mu_0\boldsymbol{J} ×B=μ0(J+Jm)=μ0J+×M×(BM)=μ0J

再代入矢量磁势,就可以得到磁性材料中静磁学方程:
∇ × ( ∇ × A − M ) = μ 0 J \nabla \times (\nabla \times\boldsymbol{A}-\boldsymbol{M})=\mu_0\boldsymbol{J} ×(×AM)=μ0J

对于线性的磁性材料,磁化矢量场 M \boldsymbol{M} M和磁场强度 H \boldsymbol{H} H的关系是 M = μ 0 χ m H \boldsymbol{M}=\mu_0\chi_m\boldsymbol{H} M=μ0χmH,其中, χ m \chi_m χm是磁性材料的磁化率。可以得到磁通密度 B \boldsymbol{B} B和磁场强度 H \boldsymbol{H} H的关系:

B = μ 0 H + M = μ 0 ( 1 + χ m ) H = μ 0 μ r H \boldsymbol{B}=\mu_0\boldsymbol{H}+\boldsymbol{M}=\mu_0(1+\chi_m)\boldsymbol{H}=\mu_0\mu_r\boldsymbol{H} B=μ0H+M=μ0(1+χm)H=μ0μrH

其中, μ r \mu_r μr是相对磁导率,也就是 μ r = 1 + χ m \mu_r=1+\chi_m μr=1+χm。同时还可以推出磁化矢量场 M \boldsymbol{M} M和磁通密度 B \boldsymbol{B} B的关系:
M = B μ r − 1 μ r ⇒ B − M = B μ r \boldsymbol{M}=\boldsymbol{B}\frac{\mu_r-1}{\mu_r} \Rightarrow \boldsymbol{B}-\boldsymbol{M}=\frac{\boldsymbol{B}}{\mu_r} M=Bμrμr1BM=μrB

对于线性各向同性的磁性材料,其静磁学基本方程:
∇ × ( B − M ) = ∇ × B μ r = μ 0 J ⇒ ∇ × B = ∇ × ( ∇ × A ) = μ 0 μ r J \nabla \times (\boldsymbol{B}-\boldsymbol{M})=\nabla \times\frac{\boldsymbol{B}}{\mu_r}=\mu_0\boldsymbol{J} \Rightarrow \nabla \times \boldsymbol{B}=\nabla \times (\nabla \times\boldsymbol{A})=\mu_0\mu_r\boldsymbol{J} ×(BM)=×μrB=μ0J×B=×(×A)=μ0μrJ

根据矢量运算法则和库伦规范,可以得到线性各向同性磁性材料的静磁学基本方程,即矢量泊松方程:
∇ 2 A = − μ 0 μ r J \nabla^2\boldsymbol{A}=-\mu_0\mu_r\boldsymbol{J} 2A=μ0μrJ

无自由电流条件下永磁体中静磁场分析方法

永磁体中存在磁化矢量场 M \boldsymbol{M} M,在无自由电流 J \boldsymbol{J} J条件下,可以使用麦克斯韦-安培定律:
∇ × ( B − M ) = ∇ × μ 0 H = 0 \nabla\times(\boldsymbol{B}-\boldsymbol{M})=\nabla\times\mu_0\boldsymbol{H}=0 ×(BM)=×μ0H=0

这说明在无自由电流 J \boldsymbol{J} J条件下,磁场强度为无旋场,存在一个标量场 ψ m \psi_m ψm,他的负梯度等于磁场强度: H = ∇ ψ m \boldsymbol{H}=\nabla\psi_m H=ψm

然后带入高斯磁场定律( ∇ ⋅ B = 0 \nabla \cdot \boldsymbol{B}=0 B=0),得到:
∇ ⋅ ( μ 0 H + M ) = ∇ ⋅ ( − μ 0 ∇ ψ m + M ) = 0 \nabla \cdot (\mu_0\boldsymbol{H}+\boldsymbol{M})=\nabla \cdot (-\mu_0\nabla\psi_m+\boldsymbol{M})=0 (μ0H+M)=(μ0ψm+M)=0

对于线性磁性材料,也就是 M = μ 0 χ m H \boldsymbol{M}=\mu_0\chi_m\boldsymbol{H} M=μ0χmH,上述方程可以化为:
∇ ⋅ ( − μ 0 ∇ ψ m + μ 0 χ m H ) = − ∇ ⋅ ( μ 0 μ r ∇ ψ m ) = 0 ⇒ ∇ 2 ψ m = 0 \nabla \cdot (-\mu_0\nabla\psi_m+\mu_0\chi_m\boldsymbol{H})=-\nabla \cdot(\mu_0\mu_r\nabla\psi_m)=0\Rightarrow \nabla^2\psi_m=0 (μ0ψm+μ0χmH)=(μ0μrψm)=02ψm=0

时变电磁场分析方法

在时谐情况下,磁通密度 B \boldsymbol{B} B和电场强度 E \boldsymbol{E} E分别用矢量磁势 A \boldsymbol{A} A和标量电动势 φ \varphi φ表示:

{ B = ∇ × A E = − ∂ A ∂ t − ∇ φ \begin{cases} \boldsymbol{B}=\nabla \times \boldsymbol{A} \\\\ \boldsymbol{E}=-\frac{\partial \boldsymbol{A}}{\partial t}-\nabla \varphi \end{cases} B=×AE=tAφ

使用洛伦兹规范:
∇ ⋅ A + μ ϵ ∂ φ ∂ t = 0 \nabla \cdot \boldsymbol{A}+\mu\epsilon\frac{\partial \varphi}{\partial t}=0 A+μϵtφ=0

从麦克斯韦方程组可以得到波动方程或达朗贝尔方程:
{ ∇ 2 A − μ ϵ ∂ 2 A ∂ t 2 = − μ J ∇ 2 φ − μ ϵ ∂ 2 φ ∂ t 2 = − q ϵ \begin{cases} \nabla^2\boldsymbol{A}-\mu\epsilon\frac{\partial^2 \boldsymbol{A}}{\partial t^2 }=-\mu\boldsymbol{J} \\\\ \nabla^2\varphi-\mu\epsilon\frac{\partial^2 \varphi}{\partial t^2 }=-\frac{q}{\epsilon} \end{cases} 2Aμϵt22A=μJ2φμϵt22φ=ϵq

时谐电磁场可以用复数表示矢量场。复数磁通密度 B ˙ \dot{\boldsymbol{B}} B˙和复数电场强度 E ˙ \dot{\boldsymbol{E}} E˙分别用复数矢量磁势 A ˙ \dot{\boldsymbol{A}} A˙和复数标量电动势 φ ˙ \dot{\varphi} φ˙表示:

{ B ˙ = ∇ × A ˙ E ˙ = − j ω A ˙ − ∇ φ ˙ \begin{cases} \dot{\boldsymbol{B}}=\nabla \times \dot{\boldsymbol{A}} \\\\ \dot{\boldsymbol{E}}=-j\omega \dot{\boldsymbol{A}}-\nabla \dot{\varphi} \end{cases} B˙=×A˙E˙=A˙φ˙

使用复数洛伦兹规范:
∇ ⋅ A ˙ + j ω μ ϵ φ ˙ = 0 \nabla \cdot \dot{\boldsymbol{A}}+j\omega\mu\epsilon\dot{\varphi}=0 A˙+μϵφ˙=0

复数波动方程:
{ ∇ 2 A ˙ − ω 2 μ ϵ A ˙ = − μ J ˙ ∇ 2 φ ˙ − ω 2 μ ϵ φ ˙ = − q ˙ ϵ \begin{cases} \nabla^2\dot{\boldsymbol{A}}-\omega^2\mu\epsilon\dot{\boldsymbol{A}}=-\mu\dot{\boldsymbol{J}} \\\\ \nabla^2\dot{\varphi}-\omega^2\mu\epsilon\dot{\varphi}=-\frac{\dot{q}}{\epsilon} \end{cases} 2A˙ω2μϵA˙=μJ˙2φ˙ω2μϵφ˙=ϵq˙

洛伦兹规范说明可以从矢量磁势 A ˙ \dot{\boldsymbol{A}} A˙的散度求得标量电动势 φ ˙ = j ( ω μ ϵ ) − 1 ∇ ⋅ A ˙ \dot{\varphi}=j(\omega\mu\epsilon)^{-1}\nabla\cdot\dot{\boldsymbol{A}} φ˙=j(ωμϵ)1A˙。然后根据这个关系,时谐波动方程只需要求解复数矢量磁势方程。

变压器的磁路分析

磁路分析方法类似于电路分析方法,可以方便计算变压器的电动势和损耗,电机的电动势、电磁转矩和损耗。

闭合的铁芯构成了变压器的主磁路,为磁通提供低磁阻的路径。变压器运行时,励磁磁通几乎全部在铁芯内部。

对磁导率相差很大的两种材料,磁感应线主要分布在磁导率大的材料内。例如空气和铁磁材料的交界面,在铁磁材料内磁感应线几乎与界面平行,而泄露到空气中的磁通很小。原理就是公式: tan ⁡ θ 1 tan ⁡ θ 2 = μ r 2 μ r 1 \frac{\tan{\theta_1}}{\tan{\theta_2}}=\frac{\mu_{r2}}{\mu_{r1}} tanθ2tanθ1=μr1μr2,带入铁磁材料的 μ r 2 ≥ 1 0 3 \mu_{r2}\geq 10^3 μr2103,和空气的 μ r 1 = 1 \mu_{r1}=1 μr1=1,算出 θ 1 ≈ 90 ° \theta_1\approx 90\degree θ190° θ 2 ≈ 0 ° \theta_2\approx 0\degree θ2

空心线圈的磁感应线是发散的,而闭合铁芯和带有气隙的铁芯的磁感应线几乎全部在铁磁材料内。

下图为磁感应线的分布图。

在这里插入图片描述

磁路理论和电路理论有对应关系,标量磁通 Φ \varPhi Φ对应于电流 I I I。大部分通过磁路而闭合的感应线是主磁通,穿出铁芯经过周围非铁磁材料的感应线是漏磁通。

下图是肩带你结构的磁路示意图。
在这里插入图片描述

根据全电流定律,磁场强度 H H H与磁路中心线长度 l l l的乘机等于线圈电流与线圈匝数的乘积: H l = I N Hl=IN Hl=IN

可以进一步得出:

I N = l B μ = Φ l μ S IN=l\frac{B}{\mu}=\varPhi\frac{l}{\mu S} IN=lμB=ΦμSl

令磁阻为 R m = l μ S R_m=\frac{l}{\mu S} Rm=μSl,磁动势为 ϵ m = I N \epsilon_m=IN ϵm=IN,可以得到磁路的欧姆定律:
ϵ m = Φ R m \epsilon_m=\varPhi R_m ϵm=ΦRm

  • 在磁路的任何一个节点,磁通的代数和等于0,这就是磁路的基尔霍夫定律。
  • 磁路的任一闭合回路中磁压降 H l Hl Hl的代数和等于这一回路的磁动势代数和,这就是磁路的第二基尔霍夫定律
磁路电路
磁通势 e m = ∫ H d l \boldsymbol{e}_m=\int\boldsymbol{H}dl em=Hdl(安匝AT)电动势 e e = ∫ E d l \boldsymbol{e}_e=\int\boldsymbol{E}dl ee=Edl(V)
磁场强度 H H H(A/m)电场强度 E E E(V/m)
磁通 Φ \varPhi Φ(Wb)电流 I I I(A)
磁阻 R m = l μ S R_m=\frac{l}{\mu S} Rm=μSl (l/H)电阻 R = l σ S R=\frac{l}{\sigma S} R=σSl (Q)
磁导率 μ \mu μ(H/m)电导率 σ \sigma σ(S/m)
磁路欧姆定律 U m = Φ R m U_m=\varPhi R_m Um=ΦRm电路欧姆定律$U=IR $
基尔霍夫第一定律 Σ Φ = 0 \Sigma\varPhi=0 ΣΦ=0基尔霍夫第一定律 Σ I = 0 \Sigma I=0 ΣI=0
基尔霍夫第二定律 Σ U m = Σ N I \Sigma U_m=\Sigma NI ΣUm=ΣNI基尔霍夫第二定律乙 Σ U = 0 \Sigma U=0 ΣU=0

如果有永磁体,还需要考虑永磁体产生的磁动势。另外,磁场有些场合下也需要屏蔽,但是无法做到完全的屏蔽。

在交变磁场下,铁磁性物质的磁滞损耗和涡流损耗统称为铁芯损耗。磁滞损耗与频率成正比,铁芯损耗与频率的平方成正比。

电机的磁路分析

电机内的电磁场从其分布区域及作用来看,大致分为:

  1. 气隙磁场;
  2. 凸极同步电机磁极间的漏磁场或直流电机主磁极与换向极间的漏磁场;
  3. 槽内漏磁场;
  4. 绕组端部电磁场;
  5. 叠片铁芯中的磁场;
  6. 实心转子中的电磁场等。

电机内电磁场的差异仅在于边界条件差异,需要考虑区域内是否有源,媒质是否导磁、导电或兼有。电机的交变电磁场,频率很低,属于是似稳电磁场的范畴。

电机中导磁材料相对磁导率常常为 1 0 3 ∼ 1 0 5 10^3\sim 10^5 103105,而导体和非导体的电导率之比可以达到 1 0 16 10^{16} 1016。需要考虑漏磁的存在。电机设计中,气隙十分重要,能量形式的转换主要是通过气隙主磁场来进行的,靠近气隙的电枢直径、铁芯有效长度和气隙就是电机的主要尺寸。

电机磁路可分为主磁路和外磁路,磁路的划分应遵循:

  1. 每段磁路为同一材料。
  2. 磁路的截面积大体相同。
  3. 流过该磁路各截面的磁通相等。

各类旋转电机的磁路可以分为:空气隙、定子齿(磁极)、转子齿(磁极)、定子轭和转子轭。

  • 主磁路或主磁通的路径:主极铁芯-气隙-电枢齿-电枢磁轭-电枢齿-气隙-另一主极铁芯-转子磁轭。
  • 漏磁通路径:主极铁芯-气隙-另一主极铁芯-转子磁轭。

下图是凸极同步电机的磁路,主磁路就是1-2-3-4-5。

在这里插入图片描述

永磁体电机的磁路及其计算

  1. 永磁体的等效电路。

    1. 永磁体在外磁场中,工作在其退磁曲线上某一点A,去掉外磁场后,工作点不会沿着退磁曲线返回到开始的点,而是会去一个新的点A’,循环改变外磁场的,就会得到一个局部磁滞回线。这个磁滞回线很狭窄,可以用一个直线代替,叫做回复线,斜率就是回复线磁导率。
      下图为永磁体的回复线和等效电路。
      在这里插入图片描述

    2. 永磁体的退磁曲线几乎就是直线。要求工作点是在永磁体的退磁曲线拐点上,即回复线和退磁曲线的重合区域。例如图中1线,要工作在连接 ( 0 , B r ) (0,B_r) (0,Br) ( H c , 0 ) (H_c,0) (Hc,0)两点的直线上,可以列出算式:
      B = B r − B r H c H = B r − μ 0 μ r H B=B_r-\frac{B_r}{H_c}H=B_r-\mu_0\mu_r H B=BrHcBrH=Brμ0μrH

    3. 等效电路:永磁体对外表现为磁动势 U m U_m Um和磁通 Φ m \varPhi_m Φm,通常要计算出 Φ = f ( U ) \varPhi=f(U) Φ=f(U)曲线。假设截面积 S m S_m Sm,长度为 l m l_m lm,可以列出:
      Φ m = B S m = B r S m − μ 0 μ r H S m = Φ r − μ 0 μ r S m l m H l m = Φ r − U m R m \varPhi_m=BS_m=B_rS_m-\mu_0\mu_r H S_m=\varPhi_r-\frac{\mu_0\mu_r S_m}{l_m}Hl_m=\varPhi_r-\frac{U_m}{R_m} Φm=BSm=BrSmμ0μrHSm=Φrlmμ0μrSmHlm=ΦrRmUm
      其中, Φ r \varPhi_r Φr是虚拟内禀磁通, R m R_m Rm为永磁体的内磁阻。这说明永磁体可以等效为一个恒定磁通源和一个磁阻的并联,相当于电路里面的电流源,当然也可以等效成磁通势源。

  2. 永磁电机的外磁路。
    永磁体向外磁路提供磁通,为主磁通 Φ δ 0 \varPhi_{\delta 0} Φδ0,还有一部分为漏磁通 Φ σ 0 \varPhi_{\sigma 0} Φσ0,他们不和电枢绕组匝链。主磁通和漏磁通对应的磁导分别为主磁导 Λ δ \Lambda_{\delta} Λδ和漏磁导 Λ σ \Lambda_{\sigma} Λσ。主磁导通过主磁路计算而得,漏磁导难以计算,它的影响通常用漏磁系数来评估。

  3. 永磁电机的磁路计算。

    • 磁路计算一般包括:主磁路计算、外磁路计算。漏磁导计算、等效磁路分析。
    • 主磁路计算中需要确定:极弧系数、电枢铁芯有效长度、漏磁系数和气隙系数。
    • 外磁路计算中需要确定:总磁压降和磁通的关系,即外磁路的空载特性。

    外磁路的等效磁路:电机带负载时,电枢绕组电流产生电枢反应磁场,主磁路和电枢反应可以用主磁路的磁阻 R δ R_{\delta} Rδ和直轴电枢反应磁动势 U a d U_{ad} Uad的串联来表示, U a d U_{ad} Uad的正负说明是对永磁体是起到去磁还是增磁作用。然后再并联一个漏磁阻。

    永磁电机的等效磁路:将外磁路的等效磁路做变换,变换成一个磁动势 U a d ′ U'_{ad} Uad和磁阻 R ′ R' R串联的形式,为右半部分。而永磁部分则根据永磁体等效模型变换成一个磁动势 U c U_c Uc和磁阻 R m R_m Rm串联的形式,为左半边。

    下图为外磁路和永磁电机的等效磁路。
    在这里插入图片描述

漏磁与直流偏磁

变压器漏磁

变压器在铁芯外的空间通过变压器油、空气或进入结构件后闭合产生漏磁通形成漏磁场,或者绕组不紧密产生漏电感。这会在线圈内部及周围夹件、油箱等金属结构件上感应出电动势,形成环流,使得温度升高。

为了解决这一问题,常常在变压器涡流损耗分布密集的部位铺设电磁屏蔽装置,以降低损耗、使得涡流分布更加均匀,原理是让漏磁尽可能进入屏蔽装置而不是金属结构件。

对于容量大而电压等级不高的变压器,漏磁相对不高,采用铝板或铜板等电磁屏蔽装置较好。

漏磁场会使得变压器绕组感应出作用力,即绕组电动力,当电流加大时,电动力会显著增大,可能会导致线圈发生不规则变化,匝绝缘会被撑破。另一方面,漏感会产生寄生效应。

变压器直流偏磁

中线点或直流电流会使得变压器的铁芯饱和,偏移工作点进入非线性区,励磁电流发生畸变,产生大量谐波,造成变压器功耗加大、温升增加、震动异常等。

变压器铁芯一般是由硅钢片制成,其磁化特性曲线是非线性的,通常要求按照额定运行,以保证运行在线性区域,如果有直流侵入,会导致变压器工作点偏移,励磁电流会发生明显的畸变。这就是直流偏磁现象。

引起直流偏磁的外部因素有:

  1. 地磁暴:会在大地感应出地电场,不同点之间就会有电势差。
  2. 直流输电蛋鸡运行。
  3. 城市轨道交通:受到地铁负荷、地铁位置、轨道环境以及土壤电阻等因素影响。

直流偏磁的治理通常采用:

  1. 电容隔直:用电容器隔离直流,但故障时会产生过电压,把电容击穿,所以需要在电容两侧并联一个旁路保护装置。
  2. 直流电阻抑直:变压器中性点和变电站地网间串入限流电阻器,使得地上部分的直流电阻增加,电流更多从土壤中流过。
  • 12
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值