目录
引言
我们要注意 我们不研究瞬态过程,只关心稳态过程
瞬态过程的长短取决于电路的结构还有伏安特性,只要我们的激励是周期的,如果是一个周期性的信号,可以分解成一系列的正弦分量,对于我们的电磁场也一样
如果场源周期性变化,我们只关心稳态,我们可以采用傅里叶分析的变化,看作正弦电磁场的叠加
因此分析正弦电磁场是非常有用的
正弦电磁场
我们首先看正弦电磁场的复数表示
这种形式称为正弦电磁场的瞬时形式
我们就得到了所谓的复数形式
从损失形式到复数形式
也就是原来的量乘以jw
电磁场基本方程组的复数形式
正弦稳态电磁场的分析会变得简单
我们分析的还是各向同性并且线性的媒质
由此我们得到媒质的本构方程
坡印廷定理的复数形式
在一条直线上运动
当x,y,z坐标给定了以后,E和H所构成的平面就是黑板平面
坡印廷矢量取决于后面两个因子
有一部分时间向里,有一部分时间向外,如果两者时间相等,平均值为0
坡印廷向量的平均值
因此坡印廷向量的平均值才具有意义
如果平均值等于0,说明只是发生电场和磁场能量的交换,和周围点没有能量交换(从平均意义上来说)
如果时间上同向的话,平均功率最大,如果有相位差就要打折扣
,称为坡印廷向量的复数形式
实部代表流过的平均功率,虚部代表无功功率也就是交换功率