贝尔级数在构造杜教筛卷积中的应用

学了一发贝尔级数
(划掉)人赢(划掉)zzs好强啊,rqy好巨啊
群里神仙讨论……

贝尔级数只针对积性函数,如无特殊说明下文函数均为积性函数。
定义 f \mathrm{f} f p \mathrm{p} p 的贝尔级数为:
f p ( x ) = ∑ 0 ≤ i f ( p i ) x i f_p(x)=\sum_{0\le i}f(p^i)x^i fp(x)=0if(pi)xi
特别的,对于完全积性函数来说:
f p ( x ) = 1 1 − f ( p ) x f_p(x)=\frac 1 {1-f(p)x} fp(x)=1f(p)x1
例如, e p ( x ) = 1 ,   1 p ( x ) = 1 1 − x ,   i d p ( x ) = 1 1 − p x , μ p ( x ) = 1 − x ,   ( μ 2 ) p ( x ) = 1 + x , ( i d ⋅ μ ) p ( x ) = 1 − p x ,   ϕ p ( x ) = 1 − x 1 − p x e_p(x)=1,\ 1_p(x)=\frac 1 {1-x},\ id_p(x)=\frac 1 {1-px},\\ \mu_p(x)=1-x,\ (\mu^2)_p(x)=1+x,\\ (id⋅\mu)_p(x)=1-px,\ \phi_p(x)=\frac{1-x}{1-px} ep(x)=1, 1p(x)=1x1, idp(x)=1px1,μp(x)=1x, (μ2)p(x)=1+x,(idμ)p(x)=1px, ϕp(x)=1px1x
额外介绍一个函数 λ ( x ) = ( − 1 ) x 中 可 重 复 质 因 子 数 量 \lambda(x)=(-1)^{x中可重复质因子数量} λ(x)=(1)x
显然 λ ( x ) \lambda(x) λ(x) 完全积性,因此 λ p ( x ) = 1 1 + x \lambda_p(x)=\frac 1 {1+x} λp(x)=1+x1

结论: ( f ∗ g ) p ( x ) = f p ( x ) g p ( x ) (f*g)_p(x)=f_p(x)g_p(x) (fg)p(x)=fp(x)gp(x)
看几个例子:
1.      i d ∗ ( μ ⋅ i d ) = e 1.\ \ \ \ id*(\mu⋅id)=e 1.    id(μid)=e
因为
1 1 − p x ( 1 − p x ) = 1 \frac1{1-px}(1-px)=1 1px1(1px)=1

2.    μ 2 ∗ ( i d ⋅ μ ) 2.\ \ \mu^2*(id⋅\mu) 2.  μ2(idμ)的前缀和
这东西的贝尔级数是 ( 1 + x ) ( 1 − p x ) (1+x)(1-px) (1+x)(1px) ,把这东西和 i d \mathrm{id} id 卷一卷就是 1 + x 1+x 1+x 也就是 μ 2 \mu^2 μ2
考虑怎么求 μ 2 \mu^2 μ2 的前缀和,这个等价于问 1 \text{1} 1 n \text{n} n 中有多少数字不包含平方质因子,可以用n-n/4-n/9-n/25-n/49…然后多减的加上,以此类推就是莫反,即: ∑ i = 1 n μ 2 ( i ) = ∑ i 2 ≤ n ⌊ n i 2 ⌋ μ ( i ) \sum_{i=1}^n\mu^2(i)=\sum_{i^2\le n}\left\lfloor\frac{n}{i^2}\right\rfloor\mu(i) i=1nμ2(i)=i2ni2nμ(i)因此可以根号时间内求出,不影响杜教筛复杂度。

3.已知一个积性函数 f \mathrm{f} f ,满足:
f ( 1 ) = 1 , ∀ prime  p ,   c ≥ 0 , f ( p c ) = p c + ( − 1 ) c f(1)=1,\\ \forall \text{prime }p,\ c\geq0, f(p^c)=p^c+(-1)^c f(1)=1,prime p, c0,f(pc)=pc+(1)c
f \mathrm{f} f 的前缀和。
显然
f = i d + λ − e f=id+\lambda-e f=id+λe
因此
f p ( x ) = 1 1 − p x + 1 1 + x − 1 f_p(x)=\frac1{1-px}+\frac1{1+x}-1 fp(x)=1px1+1+x11
把他和 g p ( x ) = ( 1 − p x ) ( 1 + x ) g_p(x)=(1-px)(1+x) gp(x)=(1px)(1+x) g \mathrm{g} g 卷一卷(显然 g \mathrm{g} g 就是 μ 2 ∗ ( μ ⋅ i d ) \mu^2*(\mu⋅id) μ2(μid) ):
h p ( x ) = f p ( x ) g p ( x ) = 1 + p x 2 h_p(x)=f_p(x)g_p(x)=1+px^2 hp(x)=fp(x)gp(x)=1+px2
因此 h h h 函数是个当 x x x 是完全平方数且 μ ( x ) = 1 \mu(\sqrt x)=1 μ(x )=1 的时候有 x \sqrt x x 的贡献的函数。
也就是:
∑ i = 1 n h ( i ) = ∑ i 2 ≤ n μ 2 ( i ) × i \sum_{i=1}^nh(i)=\sum_{i^2\le n}\mu^2(i)\times i i=1nh(i)=i2nμ2(i)×i
因此 h \text{h} h 可以根号求,然后 g \mathrm{g} g 像刚刚那样求即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值