学了一发贝尔级数
(划掉)人赢(划掉)zzs好强啊,rqy好巨啊
群里神仙讨论……
贝尔级数只针对积性函数,如无特殊说明下文函数均为积性函数。
定义
f
\mathrm{f}
f 模
p
\mathrm{p}
p 的贝尔级数为:
f
p
(
x
)
=
∑
0
≤
i
f
(
p
i
)
x
i
f_p(x)=\sum_{0\le i}f(p^i)x^i
fp(x)=∑0≤if(pi)xi
特别的,对于完全积性函数来说:
f
p
(
x
)
=
1
1
−
f
(
p
)
x
f_p(x)=\frac 1 {1-f(p)x}
fp(x)=1−f(p)x1
例如,
e
p
(
x
)
=
1
,
1
p
(
x
)
=
1
1
−
x
,
i
d
p
(
x
)
=
1
1
−
p
x
,
μ
p
(
x
)
=
1
−
x
,
(
μ
2
)
p
(
x
)
=
1
+
x
,
(
i
d
⋅
μ
)
p
(
x
)
=
1
−
p
x
,
ϕ
p
(
x
)
=
1
−
x
1
−
p
x
e_p(x)=1,\ 1_p(x)=\frac 1 {1-x},\ id_p(x)=\frac 1 {1-px},\\ \mu_p(x)=1-x,\ (\mu^2)_p(x)=1+x,\\ (id⋅\mu)_p(x)=1-px,\ \phi_p(x)=\frac{1-x}{1-px}
ep(x)=1, 1p(x)=1−x1, idp(x)=1−px1,μp(x)=1−x, (μ2)p(x)=1+x,(id⋅μ)p(x)=1−px, ϕp(x)=1−px1−x
额外介绍一个函数
λ
(
x
)
=
(
−
1
)
x
中
可
重
复
质
因
子
数
量
\lambda(x)=(-1)^{x中可重复质因子数量}
λ(x)=(−1)x中可重复质因子数量
显然
λ
(
x
)
\lambda(x)
λ(x) 完全积性,因此
λ
p
(
x
)
=
1
1
+
x
\lambda_p(x)=\frac 1 {1+x}
λp(x)=1+x1
结论:
(
f
∗
g
)
p
(
x
)
=
f
p
(
x
)
g
p
(
x
)
(f*g)_p(x)=f_p(x)g_p(x)
(f∗g)p(x)=fp(x)gp(x)
看几个例子:
1.
i
d
∗
(
μ
⋅
i
d
)
=
e
1.\ \ \ \ id*(\mu⋅id)=e
1. id∗(μ⋅id)=e
因为
1
1
−
p
x
(
1
−
p
x
)
=
1
\frac1{1-px}(1-px)=1
1−px1(1−px)=1
求
2.
μ
2
∗
(
i
d
⋅
μ
)
2.\ \ \mu^2*(id⋅\mu)
2. μ2∗(id⋅μ)的前缀和
这东西的贝尔级数是
(
1
+
x
)
(
1
−
p
x
)
(1+x)(1-px)
(1+x)(1−px) ,把这东西和
i
d
\mathrm{id}
id 卷一卷就是
1
+
x
1+x
1+x 也就是
μ
2
\mu^2
μ2 。
考虑怎么求
μ
2
\mu^2
μ2 的前缀和,这个等价于问
1
\text{1}
1 到
n
\text{n}
n 中有多少数字不包含平方质因子,可以用n-n/4-n/9-n/25-n/49…然后多减的加上,以此类推就是莫反,即:
∑
i
=
1
n
μ
2
(
i
)
=
∑
i
2
≤
n
⌊
n
i
2
⌋
μ
(
i
)
\sum_{i=1}^n\mu^2(i)=\sum_{i^2\le n}\left\lfloor\frac{n}{i^2}\right\rfloor\mu(i)
i=1∑nμ2(i)=i2≤n∑⌊i2n⌋μ(i)因此可以根号时间内求出,不影响杜教筛复杂度。
3.已知一个积性函数
f
\mathrm{f}
f ,满足:
f
(
1
)
=
1
,
∀
prime
p
,
c
≥
0
,
f
(
p
c
)
=
p
c
+
(
−
1
)
c
f(1)=1,\\ \forall \text{prime }p,\ c\geq0, f(p^c)=p^c+(-1)^c
f(1)=1,∀prime p, c≥0,f(pc)=pc+(−1)c
求
f
\mathrm{f}
f 的前缀和。
显然
f
=
i
d
+
λ
−
e
f=id+\lambda-e
f=id+λ−e
因此
f
p
(
x
)
=
1
1
−
p
x
+
1
1
+
x
−
1
f_p(x)=\frac1{1-px}+\frac1{1+x}-1
fp(x)=1−px1+1+x1−1
把他和
g
p
(
x
)
=
(
1
−
p
x
)
(
1
+
x
)
g_p(x)=(1-px)(1+x)
gp(x)=(1−px)(1+x) 的
g
\mathrm{g}
g 卷一卷(显然
g
\mathrm{g}
g 就是
μ
2
∗
(
μ
⋅
i
d
)
\mu^2*(\mu⋅id)
μ2∗(μ⋅id) ):
h
p
(
x
)
=
f
p
(
x
)
g
p
(
x
)
=
1
+
p
x
2
h_p(x)=f_p(x)g_p(x)=1+px^2
hp(x)=fp(x)gp(x)=1+px2
因此
h
h
h 函数是个当
x
x
x 是完全平方数且
μ
(
x
)
=
1
\mu(\sqrt x)=1
μ(x)=1 的时候有
x
\sqrt x
x 的贡献的函数。
也就是:
∑
i
=
1
n
h
(
i
)
=
∑
i
2
≤
n
μ
2
(
i
)
×
i
\sum_{i=1}^nh(i)=\sum_{i^2\le n}\mu^2(i)\times i
i=1∑nh(i)=i2≤n∑μ2(i)×i
因此
h
\text{h}
h 可以根号求,然后
g
\mathrm{g}
g 像刚刚那样求即可。