12个小球中有一个次品,次品轻重未知。用无砝码天平测量,三次机会,找出次品

本文探讨了一种解决天平找次品问题的方法,利用4+4+4的分组策略,详细分析了第一次平衡和不平衡情况下的解决方案,以及2x6分组的潜在可能性。作者揭示了隐藏的信息和如何利用初始天平状态来确定次品及其轻重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题分析
基本思路
分类讨论之——第一次平衡
分类讨论之——第一次不平衡

问题分析

这个问题的主要难点在于,次品的轻重是未知的,也就是说按照常规的二分法,将12个小球分成6+6的两组测量,的确能够得到天平一边高一边低的结果,但是你不知道次品的轻重,所以你不知道次品在高的那6个里面,还是在低的那6个里面。

基本思路

千里之行,始于足下,解决该问题,我们首先要考虑在第一次测量的时候如何对小球进行分组。由于常规的6+6分组法行不通,所以我们要尝试其它的分组方法。分组的思路为:在第一次测量后,能够确定次品在哪n个里面,或在哪12-n个里面内。无论是n还是12-n,都能够用两次测量得出结果。按照经验判断,对12个小球进行均分,得出正确答案的可能性要高于不均分。已知6+6基本不可行,剩下的均分方案还有:1x12(直接pass)、2x6(这个距离可行仅一步之遥,后面我会具给出解释)、3+3+3+3(感觉有可能性,但是我没有具体尝试)、4+4+4。

本帖将从4+4+4的角度展开进行分析。

另外,此题其实暗含了两个隐藏信息:1. 找到次品的同时,基本上就确定了次品是轻还是重;2. 小球放在哪个盘、或者从哪个盘拿下来,这个信息其实是可以做文章的。

分类讨论之——第一次平衡

首先,我们将4个小球放在天平的左边,4个小球放在天平的右边,得到天平平衡。这说明天平上的小球全部都是合格品,次品在天平下的四个小球中。如下图所示,为了便于区分,我们用红色表示正常的球,蓝色表示未知的球。Alt
此时,我们确定了8个球为正常球,还有两次机会。要在最后一次测试得道正确结果,我们必须要保证天平左右的球分别只有一个球没有鉴定。要得到这样的效果,在第二次测试完毕后我们必须将未知小球筛选到只剩两个未知。

要达到这样的目的,在第二次测量的时候,对这四个蓝球分2+2两组分别上天平测量,我们只能得到一高一低的天平,但是我们仍然无法确定高的那一组包含次品,还是低的那一组包含次品。

那么我们可以利用这8个红球:把所有的球都从天平上拿下来,从8个红球中随便取两个到天平的一侧;从4个蓝球中随便取两个到天平的另一侧。

这一次,如果天平平衡,蓝球数量变为2,次品必为没上过天平的两个之一;如果天平不平衡,那么蓝球数量变为2,次品必定为上过天平的两个之一。因此,我们肯定能够得到10个红球和2个蓝球。那么,第三次测量的思路为:从剩下两个蓝球中随机取一个替换天平上任意一个红球。若天平倾斜,则次品为被替换上去的蓝球,且次品的轻重可根据天平的倾向性确定;若天平仍然平衡,则次品为剩下的那个蓝球

分类讨论之——第一次不平衡

若第一次不平衡,说明次品在天平上,但在哪一侧未知。这也是该问题下,采取4+4+4方案的难点所在:这相当于我们反向得到了4个蓝球和8个红球,但是:

  1. 8个红球里面,剩下的4个在天平的哪一侧不清楚;
  2. 8个红球4个蓝球,但是也只有两次测量机会了。

这种情况下,我们就要摒弃一般的“两个相比定结果”或者“从两个里面排除一个定结果”的思路,转而思考:三个球、一次测量机会,能不能得出正确结果呢?

答案是可以的。

三个球、一个次品、一次机会、次品轻重未知,如何确定次品?

仅仅凭借三个球,一条命,的确是无法确定哪个是次品的,除非放上天平的刚好是两个正品,即:2个红球上了天平,天平平衡,剩下的肯定是次品。

但假如,在放上天平之前,天平的状态是明确的呢?

情景示例: 天平一开始是左高右低;左侧拿掉一个,记为A,右侧拿掉一个,记为B,天平平衡;此时A再放回左侧,右侧放上C,天平恢复到了左高右低的状态,这种控制变量法显然可以确定A就是那个次品。

这便是我在基本思路中提到的第二个隐含信息:小球放在哪个盘、或者从哪个盘拿下来,这个信息其实是可以做文章的。所以第二次测量,我们就是要创建一个和上面情景示例中类似的条件。

如何用第二次测量分出三个小球——思路一

如图所示,为了便于分辨,我们仍然用红色标识已经确定为正品的球,但是用绿色标识天平右边的球。此时,蓝色球和绿色球的正次性未知。Alt
第二次测量,我们可以拿掉两个蓝球,用两个红球替换;拿掉一个绿球,用一个红球替换。此时,天平的左侧颜色分布为红红蓝蓝,右侧为绿绿绿,我们进行第二次测量。

如果天平平衡: 说明次品在被替下来的两个蓝球和一个绿球中。若次品是蓝球,说明次品比正品重;反之次品比正品轻。所以我们将两个蓝球分别放在天平的两侧。如果天平平衡,则次品为绿球;如果天平恢复左低右高的状态,说明次品为放在天平左侧的蓝球

这里不能放一蓝一绿是因为,平衡的话结果自然不言而喻;若不平衡,无论左还是绿左,因为次品是轻还是重未知,所以无论天平怎么倒,你只能知道次品在这一蓝一绿中,但不能指出是哪个。

如果天平仍然左低右高: 说明次品在天平上。但是我们发现,天平中未知的小球有五个,即便知道次品的轻重,一次测量无论如何也无法从五个球中确定次品。这说明我们在制定第二次测量的方案时,只考虑把拿下来的小球凑出三个一组,未考虑天平上剩下的也要凑出三个一组。

但如果多拿下来,或者少拿下来,又导致拿下来的小球数量不对了,这该怎么办呢?

如何用第二次测量分出三个小球——思路二

思路二其实很简单,我们只需要在思路一的替换基础上,再实行一次交换:将天平左侧上任意的一个蓝球,与天平右侧上任意一个绿球对调位置,我们就得到了:天平的左侧颜色分布为红红绿,右侧为绿绿

这样一来,就有两种结果:

  1. 如果交换后,天平仍然不平衡,并且天平的倾向性发生了改变,此时说明次品就在这对调的一蓝一绿中。一次测量机会,两个小球,天平的倾向性发生了变化,确定次品以及次品的轻重性,具体方法参考第一次平衡的情景。
  2. 如果交换后,天平仍然不平衡,但是天平的倾向性没有发生改变,说明次品在未调换的一蓝两绿中。一次测量机会,三个小球,天平的倾向性未发生变化,确定次品以及次品的轻重性,具体方法参考思路一。

为什么说2x6的分组方法距离成功仅仅一步之遥

如果采取2+2+2+2+2+2的分组,第一次测量,结果无外乎:平衡、不平衡。

如果不平衡,那么皆大欢喜,我们直接确定了8个红球和4个蓝球,接下来的测量方法,可以直接参考4+4+4分组下第一次平衡的情况;如果平衡,我们还是得到了8个蓝球和4个红球的结果,但和4+4+4分组下第一次不平衡的情况不同——

我们不知道这8个蓝球,哪四个在天平高处,哪四个在天平低处!

最后,3+3+3+3的做法,我个人的感觉是可行的,但是我本人没有具体尝试;至于其它的分组,大家可以自行探索其可行性。

欢迎大家在评论区展开讨论。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值