作者: Phill King
邮箱: phillking1982@163.com
原创文章,转载请注明出处。
有12个外表一模一样的小球,除了有一个小球略轻或略重,其他的小球质量都是一样的。要求用没砝码的天秤只称3次,找出唯一的异常球,并且知道它是更轻还是更重。
称球问题在网上颇为流行,有8球,12球,13球等版本。对应的解法大致相似,都是将小球分成三组进行称量。本文先提供一个12球的常用解法。
12球解法
我们首先将所有小球分成三组,每组4个。
第一轮:
一组放在左边,一组放在右边。剩余一组放在旁边。
红色球:第一轮左边
蓝色球:第一轮右边
黄色球:第一轮不称
第一轮的可能性结果有三种:
1.平衡,即一样重
2.左边轻
3.左边重
第二轮
1. 先分析第一轮平衡的情况:
因为第一轮结果是平衡,我们确定放在天平上的都是正常球。取其中三个放在天平左边,而第一轮剩余的三个球放在右边。分析结果:
1. 平衡。 则可确定剩余的一球就是异常球。第三轮拿一个正常球和异常球比较,即可知道其轻重。
2. 左边轻。说明异常球在右边三球中,且偏重。第三轮取右边三球中的两球分别放置在天平两边。如果平衡,剩余的即时异常球且偏重。如果不平衡,哪边重的就是异常球。
3.左边重。说明异常球在右边三球中,且偏轻。剩余参考上一条分析。
2. 再分析第一轮不平衡的情况。
假设第一轮是左边轻(左边重的分析方法是一样的,下文不做赘述)
第一轮是左边轻,那么剩余的4球为正常球。我们按照一下步骤操作:
1. 取右边的三个球放在旁边
2. 取左边的三个球放到右边
3,将正常的三个球放在左边。
分析第二轮可能的结果
1. 平衡。 异常球在取出的三个球中,且偏重。在剩余三球中取两球称,即可找到异常球。
2. 左边轻。说明异常球在未变动的两个球中。取两球中一个和正常球比较,即可知道哪个是异常球和轻重。
3.左边重。说明异常球在从左边移到右边的三个球中,且偏轻。在剩余三球中取两球称,即可找到异常球。
如果第一轮是左边重,采用同样的方法也可以得知结果。
综上所述:
12个小球最少需要一架天平称三次才能找到异常球,并且可以知道其更轻还是更重。
下一篇文章介绍一种更通用的可以推广到任意球的方法。