Ubuntu22.04从零开始配置深度学习环境

本文详细介绍了如何在Ubuntu系统上安装NVIDIA显卡驱动、CUDA、cuDNN,以及配置环境变量和安装Anaconda与PyCharm,为深度学习开发提供基础环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、安装ubuntu系统

二、安装NVIDIA显卡驱动

三、安装CUDA

1.进入CUDA官网复制所需版本的安装命令

2.下载安装

2.1 没有报错

2.2 gcc报错

2.2.1解决方法一

2.2.2解决方法二

2.2.2.1 CUDA11.0

2.2.2.2 其他CUDA版本

3.配置环境变量

4.测试是否安装成功

四、安装cuDNN

1.下载cuDNN

2.解压下载好的cudnn

3.复制文件

五、安装Anaconda

1.下载安装程序

2.运行安装程序

3.配置环境

六、安装pycharm


一、安装ubuntu系统

我安装的是ubuntu22.04版本,这里默认ubuntu系统已安装好,就不展开细说了

二、安装NVIDIA显卡驱动

Ubuntu上直接通过以下apt命令安装nvidia驱动

sudo apt install nvidia-driver-470-server

我安装的是470.223.02这个版本,可以自行选择别的版本的驱动。

安装完毕后重启电脑

重启后终端内输入“nvidia-smi”命令,显示以下内容,说明显卡安装成功。

三、安装CUDA

1.进入CUDA官网复制所需版本的安装命令

访问CUDA官网,选择你需要下载的CUDA版本,我选择的是CUDA11.0

CUDA大版本与显卡驱动里面的CUDA Version的大版本相同即可,小版本不影响

CUDA官网

选好对应的系统配置后下载run版本的,复制官方给出的Installation Instructions:的指令

wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run
sudo sh cuda_11.0.3_450.51.06_linux.run

2.下载安装

2.1 没有报错

出现该页面说明检测到系统原有的驱动,选择continue即可。

我们在第二步已安装显卡驱动Driver,由此Driver不选,只需要把cuda tool勾选即可

2.2 gcc报错

这是由于gcc版本不匹配的问题

2.2.1解决方法一

使用 --override 指令直接忽略版本问题

对于在Ubuntu 22.04配置深度学习环境,您可以按照以下步骤进行操作: 1. 更新系统和软件包: ``` sudo apt-get update sudo apt-get upgrade ``` 2. 安装NVIDIA显卡驱动(如果您的机器上有NVIDIA GPU): ``` sudo apt-get install nvidia-driver-<version> ``` 3. 安装CUDA(如果您的GPU支持): - 下载适用于Ubuntu 22.04的CUDA Toolkit installer(.deb文件):https://developer.nvidia.com/cuda-downloads - 运行以下命令安装CUDA Toolkit: ``` sudo dpkg -i cuda-repo-*.deb sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub sudo apt-get update sudo apt-get install cuda ``` 4. 安装cuDNN(可选,如果您计划使用TensorFlow、PyTorch等深度学习框架): - 下载适用于Ubuntu 22.04的cuDNN Library:https://developer.nvidia.com/rdp/cudnn-archive - 解压下载的文件,并将文件拷贝到CUDA安装目录: ``` tar -xzvf cudnn-*.tgz sudo cp -P cuda/include/cudnn*.h /usr/local/cuda/include sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 5. 安装Python和相关工具: ``` sudo apt-get install python3-dev python3-pip ``` 6. 创建和激活一个虚拟环境(可选,但推荐): ``` sudo apt-get install python3-venv python3 -m venv myenv source myenv/bin/activate ``` 7. 安装深度学习框架(如TensorFlow、PyTorch等): - 使用pip安装TensorFlow: ``` pip install tensorflow ``` - 使用pip安装PyTorch: ``` pip install torch torchvision ``` 8. 安装其他必要的库和工具: ``` pip install numpy matplotlib jupyter ``` 这些步骤可以帮助您在Ubuntu 22.04配置深度学习环境。根据您的需求,您还可以安装其他库和工具。记得根据您的硬件和软件要求进行适配和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值