人工智能数学基础(高等数学基础)

唐宇迪老师课程:https://www.bilibili.com/video/BV1LQ4y197hi

一、函数

1. 定义

  1. 量和量之间的关系如: A = π r 2 A=\pi r^2 A=πr2
  2. y = f ( x ) y=f(x) y=f(x),其中 x x x 是自变量, y y y是因变量。
  3. 函数在 x 0 x_0 x0 取得的函数值: y 0 = y ∣ x = x 0 = f ( x 0 ) y_0=y|_{x=x_0}=f(x_0) y0=yx=x0=f(x0)
  4. 符号只是一种表示,也可以: y = g ( x ) 、 y = φ ( x ) 、 y = ψ ( x ) y=g(x)、y=\varphi(x)、y=\psi(x) y=g(x)y=φ(x)y=ψ(x)

2. 几种函数

  1. 分段函数:
    f ( x ) = { x , x ≥ 0 − x , x < 0 f(x)= \begin{cases} \sqrt{x}, & \text{x$\geq$0}\\ -x, & \text{x < 0} \end{cases} f(x)={x ,x,x0x < 0
  2. 反函数: h = 1 2 g t 2 ⇒ h = h ( t ) ⇒ t = 2 h g ⇒ t = t ( h ) \displaystyle h = {1\over 2} gt^2\Rightarrow h = h(t) \Rightarrow t = \sqrt{2h\over g} \Rightarrow t = t(h) h=21gt2h=h(t)t=g2h t=t(h)
  3. 显函数:显函数是用 y = f ( x ) y=f(x) y=f(x)来表示的函数。例: y = x 2 + 1 y = x^2+1 y=x2+1
  4. 隐函数:隐函数是由隐式方程所隐含定义的函数。例: 3 x + y − 4 = 0 , F ( x , y ) = 0 3x + y - 4 = 0,F(x,y) = 0 3x+y4=0F(x,y)=0

3. 几种特性

  1. 奇偶性:
    (1)偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),关于 y y y 轴对称。
    (2)奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),关于原点对称。
  2. 周期性: f ( x + T ) = f ( x ) f(x + T) = f(x) f(x+T)=f(x)
  3. 单调性:单调增加、单调减少

二、极限

1. 数列

  1. 按照一定次数排列的一列数: u 1 , u 2 , u 3 , ⋯   , u n , ⋯ u_1,u_2,u_3,\cdots,u_n,\cdots u1,u2,u3,,un,,其中 u n u_n un 叫做通项。
  2. 对于数列 u n {u_n} un,如果当 n n n 无限增大时,其通项无限接近于一个常数 A A A,则称该数列以 A A A 为极限或称数列收敛于 A A A,否则称数列为发散,表示为 lim ⁡ n → ∞ u n = A \displaystyle \lim_{n\to\infty}u_n=A nlimun=A,或 u n → A ( n → ∞ ) u_n\rightarrow A(n\rightarrow\infty) unA(n)。例: lim ⁡ n → ∞ 1 3 n = 0 、 lim ⁡ n → ∞ n n + 1 = 1 \displaystyle \lim_{n\to\infty}{1\over 3^n}=0、\displaystyle \lim_{n\to\infty}{n\over n+1}=1 nlim3n1=0nlimn+1n=1

2. 极限

  1. 函数在 x 0 x_0 x0 的领域内有定义, lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\rightarrow x_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 ) f(x)\rightarrow A(x\rightarrow x_0) f(x)A(xx0)
  2. 左右极限:函数在左半领域( x 0 − δ , x 0 x_0 - \delta, x_0 x0δ,x0)/ 右半领域( x 0 , x 0 + δ x_0, x_0 + \delta x0,x0+δ)内有定义。
    • 左极限: lim ⁡ x → x 0 − f ( x ) = A \displaystyle \lim^{}_{x \to x_0^-} f(x)= A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 − ) f(x) \rightarrow A (x \rightarrow x_0^-) f(x)A(xx0),或 f ( x 0 − 0 ) = A f(x_0 - 0) = A f(x00)=A
    • 右极限: lim ⁡ x → x 0 + f ( x ) = A \displaystyle \lim^{}_{x \to x_0^+} f(x)= A xx0+limf(x)=A,或 f ( x ) → A ( x → x 0 + ) f(x) \rightarrow A (x \rightarrow x_0^+) f(x)A(xx0+),或 f ( x 0 + 0 ) = A f(x_0 + 0) = A f(x0+0)=A
  3. lim ⁡ x → x 0 f ( x ) = A \displaystyle \lim^{}_{x \to x_0} f(x)= A xx0limf(x)=A 的充要条件是 lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = A \displaystyle \lim^{}_{x \to x_0^-} f(x)= \displaystyle \lim^{}_{x \to x_0^+} f(x)= A xx0limf(x)=xx0+limf(x)=A

3. 无穷小

  1. 定义:以数 0 0 0 为极限的变量,无限接近于 0 0 0
  2. 性质:
    • 有限个无穷小的代数仍是无穷小。
    • 无限个无穷小的代数不一定是无穷小。
      例: lim ⁡ n → ∞ ( 1 n 2 + 2 n 2 + ⋯ + n n 2 ) = lim ⁡ n → ∞ ( n ( n + 1 ) 2 n 2 ) = lim ⁡ n → ∞ ( n + 1 2 n ) = 1 2 \displaystyle \lim_{n \to\infty}(\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n}{n^2})=\displaystyle \lim_{n \to\infty}(\frac{\frac{n(n+1)}{2}}{n^2})=\displaystyle \lim_{n \to\infty}(\frac{n + 1}{2n})=\frac{1}{2} nlim(n21+n22++n2n)=nlim(n22n(n+1))=nlim(2nn+1)=21
    • 有限个无穷小的仍是无穷小。
    • 有界变量无穷小仍是无穷小。
    • 无穷小的不一定是无穷小。例: lim ⁡ n → ∞ n 2 n = 1 2 \displaystyle \lim^{}_{n \to \infty}\frac{n}{2n}=\frac{1}{2} nlim2nn=21
  3. 极限与无穷小的关系: lim ⁡ x → x 0 f ( x ) = A \displaystyle \lim_{x \to x_0} f(x)= A xx0limf(x)=A 的充要条件是 f ( x ) = A + α ( x ) f(x) = A + \alpha(x) f(x)=A+α(x),其中 α ( x ) \alpha(x) α(x) x → x 0 x \rightarrow x_0 xx0 时的无穷小。

4. 无穷大

  1. 含义:无穷大并不是一个很大的数,是相对于变换过程来说。 lim ⁡ x → x 0 f ( x ) = ∞ \displaystyle\lim_{x\to x_0}f(x)=\infty xx0limf(x)= f ( x ) → ∞ ( x → x 0 ) f(x)\rightarrow\infty(x\rightarrow x_0) f(x)(xx0)
  2. 无穷小和无穷大的关系:在自变量的变换的同一过程中,如果 f ( x ) f(x) f(x) 为无穷大,那么 1 f ( x ) \displaystyle\frac{1}{f(x)} f(x)1 为无穷小。

5. 无穷小的比较

\qquad 假设 α = α ( x ) , β = β ( x ) \alpha = \alpha(x), \beta = \beta(x) α=α(x),β=β(x) 都是无穷小, lim ⁡ x → x 0 α ( x ) = 0 , lim ⁡ x → x 0 β ( x ) = 0 \displaystyle\lim_{x\to x_0}\alpha(x)=0, \lim_{x\to x_0} \beta(x)=0 xx0limα(x)=0,xx0limβ(x)=0
\qquad 1. lim ⁡ x → x 0 β α = 0 \displaystyle \lim_{x \to x_0}\frac{\beta}{\alpha}=0 xx0limαβ=0,则称 β \beta β 是比 α \alpha α 高阶无穷小
\qquad 2. lim ⁡ x → x 0 β α = ∞ \displaystyle \lim_{x \to x_0}\frac{\beta}{\alpha}=\infty xx0limαβ=,则称 β \beta β 是比 α \alpha α 低阶无穷小
\qquad 3. lim ⁡ x → x 0 β α = C ≠ 0 \displaystyle \lim_{x \to x_0}\frac{\beta}{\alpha}=C\neq0 xx0limαβ=C=0,则称 β \beta β α \alpha α同阶无穷小

三、函数的连续性

1. 函数的连续性

  1. 定义:设函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 的某领域内有定义,如果当自变量的改变量 Δ x \Delta x Δx 趋近于 0 0 0 时,相应函数的改变量 Δ y \Delta y Δy 也趋近于 0 0 0,则称 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处连续。
  2. 函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处连续,需要满足的条件:
    • 函数在 x 0 x_0 x0 处有定义。
    • 函数在 x 0 x_0 x0 处极限 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x \to x_0}f(x) xx0limf(x) 存在。
    • 极限值 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0} f(x) xx0limf(x) 等于函数值 f ( x 0 ) f(x_0) f(x0)

2. 函数的间断点

  1. 定义:函数 f ( x ) f(x) f(x) 在点 x = x 0 x=x_0 x=x0 处不连续,则称其为函数的间断点。
  2. 三种情况为间断点:
    • 函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处没有定义。
    • 极限 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) xx0limf(x) 不存在。
    • 函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处有定义,极限 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) xx0limf(x)存在,但是 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \displaystyle\lim_{x\to x_0}f(x) \neq f(x_0) xx0limf(x)=f(x0)
  3. 间断点分类:当 x → x 0 x\to x_0 xx0 时, f ( x ) f(x) f(x) 的左右极限存在,则称 x 0 x_0 x0 f ( x ) f(x) f(x)第一类间断点,否则为第二类间断点
    第一类间断点又可分为跳跃间断点可去间断点
    • 跳跃间断点: lim ⁡ x → x 0 − f ( x ) \displaystyle\lim_{x\to x_0^-}f(x) xx0limf(x) lim ⁡ x → x 0 + f ( x ) \displaystyle\lim_{x\to x_0^+}f(x) xx0+limf(x) 均存在,但不相等,即 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) xx0limf(x) 不存在。
    • 可去间断点: lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) xx0limf(x) 存在但不等于 f ( x 0 ) f(x_0) f(x0)

四、导数

1. 导数

  1. 定义:如果平均变化率的极限存在,即 lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \displaystyle\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)存在,则称此极限为函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 处的导数,使用 f ′ ( x ) 、 y ′ ∣ x = x 0 、 d x d y ∣ x = x 0 f'(x)、y'|_{x=x_0}、\displaystyle\frac{\mathrm{d}x}{\mathrm{d}y}|_{x=x_0} f(x)yx=x0dydxx=x0 d f ( x ) d y ∣ x = x 0 \displaystyle\frac{\mathrm{d}f(x)}{\mathrm{d}y}|_{x=x_0} dydf(x)x=x0 表示。
    • 导数与导函数的关系是局部与整体的关系,导数通常是指一点,导函数则是指一个区间上的所有导数的集合。
      \qquad
  2. 几何意义:
    • 在直线运动场景中,若 x x x 表示时刻, y y y 表示距离,函数 f f f 表示时间与距离的关系 y = f ( x ) y=f(x) y=f(x),那么导数的含义就是在 x 0 x_0 x0 时刻的瞬时速度。
    • 在直角坐标系中, y = f ( x ) y=f(x) y=f(x) 表示一个曲线,导数的含义表示的是曲线在点 x 0 x_0 x0 处的切线斜率。
      \qquad
  3. 常见求导法则
    \quad 假设函数 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x) 皆可导,则:
    • ( u ± v ) ′ = u ′ ± v ′ (u \pm v)'=u' \pm v' (u±v)=u±v
    • ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v + uv' (uv)=uv+uv
    • ( u v ) ′ = u ′ v + u v ′ v 2 ( v ≠ 0 ) (\displaystyle \frac{u}{v})'=\displaystyle \frac{u'v + uv'}{v^2}(v\neq0) (vu)=v2uv+uv(v=0)
    • ( C u ) ′ = C u ′ (Cu)'=Cu' (Cu)=Cu
    • ( C v ) = − C v ′ v 2 ( C 为 常 数 ) (\displaystyle \frac{C}{v})=-\displaystyle\frac{Cv'}{v^2}(C为常数) (vC)=v2Cv(C)
      \qquad
  4. 基本初等函数求导公式
    在这里插入图片描述
  5. 反函数求导法则
    \quad 若已知直接函数 x = f ( y ) x=f(y) x=f(y) 的导函数为 f ′ ( y ) f'(y) f(y),则 f ( y ) f(y) f(y) 的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x) 的导函数为 [ f − 1 ( x ) ] ′ = 1 f ′ ( y ) \displaystyle [f^{-1}(x)]'=\frac{1}{f'(y)} [f1(x)]=f(y)1 d y d x = 1 d x d y \displaystyle \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1,即反函数的导数等于直接函数导数的倒数
    \qquad
  6. 复合函数求导法则
    \quad y = f ( u ) , u = g ( x ) y=f(u), u=g(x) y=f(u),u=g(x) f ( u ) f(u) f(u) g ( x ) g(x) g(x) 都可导,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 的导数为 d y d x = d y d u ⋅ d u d x \displaystyle \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=dudydxdu y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) \displaystyle y'(x)=f'(u)\cdot g'(x) y(x)=f(u)g(x)

2. 微分

  1. 定义:设函数 y y y = f ( x ) f(x) f(x)在某个领域内有定义, x 0 x_0 x0 x 0 + Δ x x_0+\Delta x x0+Δx 在这区间内,如果增量 f ( x 0 + Δ x ) − f ( x 0 ) f(x_0+\Delta x)-f(x_0) f(x0+Δx)f(x0) 可表示为 Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x + o(\Delta x) Δy=AΔx+o(Δx),其中 A A A 是不依赖 Δ x \Delta x Δx 的常数, o ( Δ x ) o(\Delta x) o(Δx) 是指 Δ x \Delta x Δx 趋于 0 0 0 时的高阶无穷小,那么称函数 y y y = f ( x ) f(x) f(x) 在点 x 0 x_0 x0 是可微的,而 A Δ x A\Delta x AΔx 叫做函数在点 x 0 x_0 x0 相应于自变量增量 Δ x \Delta x Δx 的微分,记作 d y \mathrm{d}y dy,即 d y = A Δ x \mathrm{d}y=A\Delta x dy=AΔx
    在这里插入图片描述

  2. 微分与导数的关系
    \quad 公式 Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x + o(\Delta x) Δy=AΔx+o(Δx) 两边同时除以 Δ x \Delta x Δx 得到 Δ y Δ x = A + o ( Δ x ) Δ x \displaystyle \frac{\Delta y}{\Delta x}=A+\frac{o(\Delta x)}{\Delta x} ΔxΔy=A+Δxo(Δx),当 Δ x → 0 \Delta x \to 0 Δx0 时,上式左边就是导数的定义,而右边的 o ( Δ x ) Δ x \displaystyle \frac{o(\Delta x)}{\Delta x} Δxo(Δx) 因为是高阶无穷小,所以会趋向于 0,得到以下等式 f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = A \displaystyle f'(x_0)=\lim^{}_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=A f(x0)=Δx0limΔxΔy=A,因此,如果函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微,则 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 也一定可导,且 A = f ′ ( x 0 ) A=f'(x_0) A=f(x0),反之,如果 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导,存在下式 lim ⁡ Δ x → 0 Δ y Δ x = f ′ ( x 0 ) \displaystyle \lim^{}_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=f'(x_0) Δx0limΔxΔy=f(x0),根据极限与无穷小的关系,,当 Δ x → 0 \Delta x \to 0 Δx0时, Δ y Δ x = f ′ ( x 0 ) + α \displaystyle \frac{\Delta y}{\Delta x}=f'(x_0)+\alpha ΔxΔy=f(x0)+α,其中 lim ⁡ Δ x → 0 α = 0 \displaystyle \lim^{}_{\Delta x \to 0}\alpha=0 Δx0limα=0,即 lim ⁡ Δ x → 0 α Δ x Δ x = 0 \displaystyle \lim^{}_{\Delta x \to 0}\frac{\alpha \Delta x}{\Delta x}=0 Δx0limΔxαΔx=0 α Δ x = o ( Δ x ) \alpha \Delta x=o(\Delta x) αΔx=o(Δx),上式转化为下式(又回到了微分的定义) Δ y = f ′ ( x 0 ) Δ x + o ( Δ x ) \Delta y = f'(x_0)\Delta x + o(\Delta x) Δy=f(x0)Δx+o(Δx)。因此,函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微的充分必要条件是函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导, d y = f ′ ( x 0 ) Δ x \mathrm{d}y=f'(x_0)\Delta x dy=f(x0)Δx

3. 偏导数

  1. 引入
    • 对于一元函数 y y y = f ( x ) f(x) f(x),只存在 y y y x x x的变化。
    • 对于二元函数 z z z = f ( x , y ) f(x,y) f(x,y),存在 z z z x x x变化的变化率,随 y y y变化的变化率,随 x 、 y x、y xy同时变化的变化率。
  2. 定义:设函数 z z z = f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某个领域内有定义。
    • 固定 y y y = y 0 y_0 y0,则一元函数 z z z = f ( x , y 0 ) f(x,y_0) f(x,y0)在点 x x x = x 0 x_0 x0处可导,即极限 lim ⁡ x → x 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \displaystyle \lim^{}_{x \to x_0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} xx0limΔxf(x0+Δx,y0)f(x0,y0) = A A A,则称 A A A为函数 z z z = f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处关于自变量 x x x的偏导数,记作: f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0) ∂ z ∂ x ∣ x = x 0 y = y 0 \displaystyle \frac{\partial z}{\partial x}|_{x=x_0 \atop y=y_0} xzy=y0x=x0 ∂ f ∂ x ∣ x = x 0 y = y 0 \displaystyle \frac{\partial f}{\partial x}|_{x=x_0 \atop y=y_0} xfy=y0x=x0 Z x ∣ x = x 0 y = y 0 \displaystyle Z_x|_{x=x_0 \atop y=y_0} Zxy=y0x=x0
    • 固定 x x x = x 0 x_0 x0,则一元函数 z z z = f ( x 0 , y ) f(x_0,y) f(x0,y)在点 y y y = y 0 y_0 y0处可导,即极限 lim ⁡ y → y 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \displaystyle \lim^{}_{y \to y_0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} yy0limΔyf(x0,y0+Δy)f(x0,y0) = A A A,则称 A A A为函数 z z z = f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处关于自变量 y y y的偏导数,记作: f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0) ∂ z ∂ y ∣ x = x 0 y = y 0 \displaystyle \frac{\partial z}{\partial y}|_{x=x_0 \atop y=y_0} yzy=y0x=x0 ∂ f ∂ y ∣ x = x 0 y = y 0 \displaystyle \frac{\partial f}{\partial y}|_{x=x_0 \atop y=y_0} yfy=y0x=x0 Z x ∣ x = x 0 y = y 0 \displaystyle Z_x|_{x=x_0 \atop y=y_0} Zxy=y0x=x0
  3. 几何意义:求某一点处在某个坐标轴方向的导数,就是将其他坐标轴的数值看做常数,然后平面与曲面相交截取一条曲线,这条曲线的导数就是此点在坐标轴方向上的偏导数。
    • 二元函数 z z z = f ( x , y ) f(x,y) f(x,y)表示一个空间曲面, y = y 0 y=y0 y=y0为一个平面,自变量 x x x的偏导数相当于曲面与平面相交的曲线 g ( x ) g(x) g(x) x x x轴的斜率。
    • 二元函数 z z z = f ( x , y ) f(x,y) f(x,y)表示一个空间曲面, x = x 0 x=x0 x=x0为一个平面,自变量 y y y的偏导数相当于曲面与平面相交的曲线 g ( x ) g(x) g(x) y y y轴的斜率。
  • 偏导数反映的是函数沿坐标轴方向的变化率

4. 全微分

  1. 定义:设二元函数 z z z = f ( x , y ) f(x,y) f(x,y) 在点 ( x , y ) (x,y) (x,y) 的某领域内有定义,如果函数在点 ( x , y ) (x,y) (x,y) 的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \displaystyle \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y) 可以表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \displaystyle \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ),其中 A , B A,B A,B不依赖于 Δ x , Δ y , ρ = ( Δ x ) 2 + ( Δ y ) 2 , \displaystyle \Delta x,\Delta y,\rho = \sqrt{(\Delta x)^2+(\Delta y)^2}, Δx,Δy,ρ=(Δx)2+(Δy)2 则称函数 z z z = f ( x , y ) f(x,y) f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,而 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy 称为函数在点 ( x , y ) (x,y) (x,y) 的全微分, d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy
  2. 可微分与偏导数关系
    根据可微分定义,存在某一点 p ( x + Δ x , y + Δ y ) p( x + Δ x , y + Δ y ) p(x+Δx,y+Δy) 对于公式 Δ z = A Δ x + B Δ y + o ( ρ ) \displaystyle \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ) 成立,则当 Δ y = 0 \Delta y=0 Δy=0时,上式化为 Δ z = A Δ x + o ( ∣ Δ x ∣ ) \displaystyle \Delta z=A\Delta x+o(|\Delta x|) Δz=AΔx+o(Δx),两边除以 Δ x \Delta x Δx并且令 Δ x → 0 \Delta x \to 0 Δx0 取极限,则 lim ⁡ x → x 0 f ( x + Δ x , y ) − f ( x , y ) Δ x \displaystyle \lim^{}_{x \to x_0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x} xx0limΔxf(x+Δx,y)f(x,y) = A A A,即偏导数公式所以这说明了偏导数 f x ( x , y ) f_x(x,y) fx(x,y)存在且等于 A A A,同理可证 f y ( x , y ) f_y(x,y) fy(x,y)= B B B,由此推导出以下公式 Δ z = f x ( x , y ) Δ x + f y ( x , y ) Δ y + o ( ρ ) \displaystyle \Delta z=f_x(x,y)\Delta x+f_y(x,y)\Delta y+o(\rho) Δz=fx(x,y)Δx+fy(x,y)Δy+o(ρ)如果函数的各个偏导数在点 ( x , y ) (x,y) (x,y) 是连续的,则函数可微分
  • 偏导数存在只是全微分存在的必要条件而非充分条件,即由全微分可证偏导数存在,反之不行。

5. 方向导数

  1. 引入:设 l l l x O y xOy xOy 平面以 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0) 为起点的一条射线。
    在这里插入图片描述
    e ⃗ = ( c o s α , c o s β ) \vec{e}=(cos\alpha,cos\beta) e =(cosα,cosβ) 为一单位向量, l l l x O y xOy xOy 面上通过点 P ( x 0 , y 0 ) P ( x_0 , y_0 ) P(x0,y0) 且以 e ⃗ \vec{e} e 为方向向量的直线,由空间解析几何知,直线 l l l 的参数方程可表示为
    f ( x ) = { x = x 0 + t c o s α y = y 0 + t c o s β f(x)= \begin{cases} x=x_0+tcos\alpha\\ y=y_0+tcos\beta \end{cases} f(x)={x=x0+tcosαy=y0+tcosβ
    c o s α cos\alpha cosα c o s β cos\beta cosβ 并不是相互独立的,由于单位向量 e ⃗ = ( c o s α , c o s β ) \vec{e}=(cos\alpha,cos\beta) e =(cosα,cosβ),因此, c o s 2 α + c o s 2 β = 1 cos^2\alpha+ cos^2\beta=1 cos2α+cos2β=1
    函数: z z z = f ( x , y ) f(x,y) f(x,y)
    距离: ∣ P P ′ ∣ = ρ = ( Δ x ) 2 + ( Δ y ) 2 |PP'|=\rho=\sqrt{(\Delta x)^2+(\Delta y)^2} PP=ρ=(Δx)2+(Δy)2
    增量: Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y) - f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)
  2. 定义:函数在任意方向上的导数就是方向导数。
    • 如果函数的增量,与这两点距离的比例存在,则称此为在 P P P点沿着 L L L的方向导数, ∂ f ∂ l = lim ⁡ ρ → 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) ρ \displaystyle \frac{\partial f}{\partial l} = \lim^{}_{\rho \to 0}\frac{f(x_0+\Delta x,y_0+\Delta y) - f(x_0,y_0)}{\rho} lf=ρ0limρf(x0+Δx,y0+Δy)f(x0,y0)
    • 函数 f ( x , y ) f(x,y) f(x,y) x x x轴正向 e 1 ⃗ \vec{e_1} e1 = {1,0}, y y y轴正向 e 2 ⃗ \vec{e_2} e2 = {0,1} 的方向导数分别为: f x , f y f_x,f_y fx,fy,负方向导数:- f x , f_x, fx,- f y f_y fy
  3. 定理:如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 P ( x , y ) P(x,y) P(x,y) 是可微的,那么在该点沿着任意方向 l l l 的方向导数都存在。
  4. 方向导数与全微分的关系
    由全微分的定义得到 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) \displaystyle f(x_0+\Delta x,y_0+\Delta y) - f(x_0,y_0)=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2}) f(x0+Δx,y0+Δy)f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2 ),设点 ( x 0 + Δ x , y 0 + Δ y ) (x_0+\Delta x,y_0+\Delta y) (x0+Δx,y0+Δy)在以 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为起点的射线 l l l 上,则有 Δ x = t c o s α , Δ y = t c o s β , ( Δ x ) 2 + ( Δ y ) 2 = t \Delta x=tcos\alpha,\Delta y=tcos\beta,\sqrt{(\Delta x)^2+(\Delta y)^2}=t Δx=tcosα,Δy=tcosβ,(Δx)2+(Δy)2 =t
    lim ⁡ t → 0 + f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) t = f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β \displaystyle \lim^{}_{t \to 0^+}\frac{f(x_0+\Delta x,y_0+\Delta y) - f(x_0,y_0)}{t}=f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta t0+limtf(x0+Δx,y0+Δy)f(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ
    上式左侧就是方向导数定义形式,极限存在即方向导数存在,且其值等于右式。
    由此得到定理,如果函数 f ( x , y ) f(x,y) f(x,y) 在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 可微分,那么函数在该点沿任一方向 l l l的方向导数存在。
    ∂ f ∂ l ∣ \displaystyle \frac{\partial f}{\partial l}| lf ( x 0 , y 0 ) (x_0,y_0) (x0,y0)= f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta fx(x0,y0)cosα+fy(x0,y0)cosβ

6.梯度

  1. 定义:对于二元函数,设函数 f ( x , y ) f(x,y) f(x,y) 在平面区域 D D D 内具有一阶连续偏导数,对于每一点 P ( x 0 , y 0 ) ∈ D P(x_0,y_0) \in D P(x0,y0)D,都可以给出一个向量 f x ( x 0 , y 0 ) i ⃗ + f y ( x 0 , y 0 ) j ⃗ f_x(x_0,y_0)\vec{i}+f_y(x_0,y_0)\vec{j} fx(x0,y0)i +fy(x0,y0)j ,其中 i ⃗ , j ⃗ \vec{i} ,\vec{ j} i ,j x , y x , y x,y 轴的方向向量,上述向量称为函数 f ( x , y ) f(x,y) f(x,y) 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 的梯度,记作: ∇ f ( x 0 , y 0 ) = g r a d f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i ⃗ + f y ( x 0 , y 0 ) j ⃗ \nabla f(x_0,y_0)=gradf(x_0,y_0) = f_x(x_0,y_0)\vec{i}+f_y(x_0,y_0)\vec{j} f(x0,y0)=gradf(x0,y0)=fx(x0,y0)i +fy(x0,y0)j
  • 由定义看到,梯度的方向是确定的,如果点 P 0 P_0 P0 的坐标确定,那么梯度也大小也确定
  1. 如果函数 f ( x , y ) f(x,y) f(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 可微分, e l ⃗ = ( c o s α , c o s β ) \vec{e_l}=(cos\alpha,cos\beta) el =(cosα,cosβ)是方向 l l l的单位向量
    ∂ f ∂ l ∣ \displaystyle \frac{\partial f}{\partial l}| lf ( x 0 , y 0 ) (x_0,y_0) (x0,y0)= f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β = { f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) } ⋅ { c o s α , c o s β } = g r a d f ( x 0 , y 0 ) ⋅ e l ⃗ = ∣ g r a d f ( x 0 , y 0 ) ∣ ∣ e l ⃗ ∣ c o s θ = ∣ g r a d f ( x 0 , y 0 ) ∣ c o s θ f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta=\{f_x(x_0,y_0),f_y(x_0,y_0)\}\cdot\{cos\alpha,cos\beta\}=gradf(x_0,y_0)\cdot\vec{e_l}=|gradf(x_0,y_0)||\vec{e_l}|cos\theta=|gradf(x_0,y_0)|cos\theta fx(x0,y0)cosα+fy(x0,y0)cosβ={fx(x0,y0),fy(x0,y0)}{cosα,cosβ}=gradf(x0,y0)el =gradf(x0,y0)el cosθ=gradf(x0,y0)cosθ
  • θ \theta θ为向量 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0) e l ⃗ \vec{e_l} el 的夹角。
  • θ = 0 \theta=0 θ=0 时,即 e l ⃗ \vec{e_l} el 与梯度 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0) 同方向时,函数 f ( x , y ) f(x,y) f(x,y)增加最快,函数在这个方向的方向导数达到最大值,这个值就是梯度 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0) 的模,即 ∂ f ∂ l ∣ \displaystyle \frac{\partial f}{\partial l}| lf ( x 0 , y 0 ) (x_0,y_0) (x0,y0)= ∣ g r a d f ( x 0 , y 0 ) ∣ |gradf(x_0,y_0)| gradf(x0,y0)
  1. 使用沿梯度方向的方向导数来描述函数的最大变化率,即梯度方向是函数变化率最大的方向,在梯度定义的时候就已经赋予了它这个特性。
  2. 梯度的方向与等高线切线的法向量方向是相同的。
  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软耳朵DONG

觉得文章不错就鼓励一下作者吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值