一、高等数学基础
《人工智能数学基础》唐宇迪 ----学习笔记
1.函数
1.1函数
1.1.1定义
给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
1.1.2特殊函数
1.分段函数:对于自变量x的不同取值范围,有不同的对应法则。
2.反函数:一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作 。反函数的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
3.显函数与隐函数
显函数:解析式中明显地用一个变量的代数式表示另一个变量时。
隐函数:如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。
1.1.3函数特性
1.奇偶性
(1)偶函数:f ( − x ) = f ( x ) f(-x)=f(x)f(−x)=f(x),关于 y yy 轴对称。
(2)奇函数:f ( − x ) = − f ( x ) f(-x)=-f(x)f(−x)=−f(x),关于原点对称。
2.单调性
函数的单调性(monotonicity)也可以叫做函数的增减性。当函数 f(x) 自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
3.周期性 f(x+t)=f(x)
1.2极限
1.2.1数列
数列(sequence of number),是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。对于数列 u ,如果当 n 无限增大时,其通项无限接近于一个常数 A ,则称该数列以 A 为极限或称数列收敛于 A AA,否则称数列为发散。
1.2.2收敛数列性质
1.(极限唯一性)如果数列收敛,那么极限唯一。
2.(有界性)如果数列收敛,那么一定有界。
3.(保号性)保号性就是一个收敛数列的极限如果是大于0的,那么存在正整数N,使得数列Xn中第N项之后的项都是大于0的。
4.(收敛数列与子序列关系)如果数列收敛于a,那么它任意子序列也收敛于a。
1.2.3函数极限
利用python求极限
import sympy
from sumpy import oo
import numpy as np
x=sympy.Symbol('x')
f=sympy.sin(x)/x
sympy.limit(f,x,oo)
1.3无穷小与无穷大
无穷个无穷小之和不一定是无穷小,有限个无穷小之和一定是无穷小(无穷大同理)。
1.4连续性与导数
1.4.1函数连续性定义
设函数f(x)在点 xo 的某个邻域内有定义,当自变量的增量趋于0时,对应的函数增量也趋于0.
1.4.2函数连续性需要满足的条件
1.函数在该点处有定义
2.函数在该点处极限存在
3.极限值等于函数值
1.4.3函数间断点
1.4.4导数
1.定义
2.几何意义:该点处切线斜率
3.基础求导法则:
4.常用求导公式
from sympy import *
from sympy.abc import x,y,z,f
diff(asin(sqrt(sin(x))))
1.5偏导数
几何意义:
python求解示例:
from sympy import *
from sympy.abc import x,y,z,f
f=x**2+3*x*y+y**2
diff(f,x) #对x求偏导
fx=diff(f,x)
fx.evalf(subs={x:1,y:2}) #求值
1.6方向导数
偏导数反映的是函数沿坐标轴方向的变化率,方向导数本质上研究的是函数在某点处沿某特定方向的变化率问题。
1.6.1定义
1.6.2几何意义
1.7梯度
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模).
记作grad f(x,y)=
梯度的方向与等高线切线的法向量方向是相同的
1.8梯度下降法求函数最小值
2.微积分
2.1微积分基本思想
微分:对函数局部变化率的线性描述
p点纵坐标的变化值与该点切线的变化距离dy之间的差值|-dy|比||小得多,这时可以用p点附近的一个切线段来近似替代原函数。 得多,这时可以用p点附近的一个切线段来近似替代原函数.
2.2定积分
2.2.1定义
2.2.2几何意义
2.3牛顿莱布尼兹公式
3.泰勒公式与拉格朗日乘子法
3.1泰勒公式
3.2阶数和阶乘的作用
3.3拉格朗日乘子法