人工智能数学基础--基础篇

一、高等数学基础

《人工智能数学基础》唐宇迪 ----学习笔记

1.函数

1.1函数

1.1.1定义

给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

1.1.2特殊函数

1.分段函数:对于自变量x的不同取值范围,有不同的对应法则。

2.反函数:一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作eq?x%3Df%5E%7B-1%7D%20%28y%29 。反函数eq?x%3Df%5E%7B-1%7D%20%28y%29的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

3.显函数与隐函数

显函数:解析式中明显地用一个变量的代数式表示另一个变量时。

隐函数:如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。

1.1.3函数特性

1.奇偶性

(1)偶函数:f ( − x ) = f ( x ) f(-x)=f(x)f(−x)=f(x),关于 y yy 轴对称。
(2)奇函数:f ( − x ) = − f ( x ) f(-x)=-f(x)f(−x)=−f(x),关于原点对称。

2.单调性

函数的单调性(monotonicity)也可以叫做函数的增减性。当函数 f(x) 自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。

3.周期性 f(x+t)=f(x)

1.2极限

1.2.1数列

数列(sequence of number),是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。对于数列 u ,如果当 n 无限增大时,其通项无限接近于一个常数 A ,则称该数列以 A 为极限或称数列收敛于 A AA,否则称数列为发散。


1.2.2收敛数列性质

1.(极限唯一性)如果数列收敛,那么极限唯一。

2.(有界性)如果数列收敛,那么一定有界。

3.(保号性)保号性就是一个收敛数列的极限如果是大于0的,那么存在正整数N,使得数列Xn中第N项之后的项都是大于0的。

4.(收敛数列与子序列关系)如果数列收敛于a,那么它任意子序列也收敛于a。

1.2.3函数极限

b9897c925a7f4f768b1d0f88de12fb10.png

 f82e7123dac749d593364499e95f1e7f.png

 利用python求极限

import sympy
from sumpy import oo
import numpy as np
x=sympy.Symbol('x')
f=sympy.sin(x)/x
sympy.limit(f,x,oo)

 1.3无穷小与无穷大

无穷个无穷小之和不一定是无穷小,有限个无穷小之和一定是无穷小(无穷大同理)。

1.4连续性与导数

1.4.1函数连续性定义

设函数f(x)在点 xo 的某个邻域内有定义,当自变量的增量趋于0时,对应的函数增量也趋于0.

                                 45aa8dee964e4da38099090d278a5896.png

1.4.2函数连续性需要满足的条件

1.函数在该点处有定义

2.函数在该点处极限存在

3.极限值等于函数值

1.4.3函数间断点

3400ccc57c404caf8527582f28b320aa.png

298c2146c3a142f9b61028dba546908e.png1.4.4导数

1.定义

9bbab50dd4d04c04ad7f9119026dd29f.png

 2.几何意义:该点处切线斜率

3.基础求导法则:

3bbae2d3705843e8b8b16d07b9154b04.png

 4.常用求导公式

1e2f7d88b51745b4ae219636a726db41.png

from sympy import *
from sympy.abc import x,y,z,f
diff(asin(sqrt(sin(x))))

 1.5偏导数

f977e67fed784137b159d710774ab8b2.png

 几何意义:

cd4638f88c8f4e4497e502cda53a1011.png

 python求解示例:

from sympy import *
from sympy.abc import x,y,z,f
f=x**2+3*x*y+y**2
diff(f,x)  #对x求偏导
fx=diff(f,x)
fx.evalf(subs={x:1,y:2})  #求值

1.6方向导数

 偏导数反映的是函数沿坐标轴方向的变化率,方向导数本质上研究的是函数在某点处沿某特定方向的变化率问题。

1.6.1定义

570fa53805434d61aa480311d58ce478.png

 1.6.2几何意义

1685a038f742409cb321eeb49db9a888.png

 1.7梯度

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模).

                         记作grad f(x,y)=

                                                    eq?%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7Di+%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7Dj

  梯度的方向与等高线切线的法向量方向是相同的

1.8梯度下降法求函数最小值

4361ab25652d460f81ba9d301e3a1457.png

2.微积分

2.1微积分基本思想

微分:对函数局部变化率的线性描述

 93577fbed7e040bcb4ed83604102ba13.png

p点纵坐标的变化值eq?%5CDelta%20y与该点切线的变化距离dy之间的差值|eq?%5CDelta%20y-dy|比|eq?%5CDelta%20y|小得多,这时可以用p点附近的一个切线段来近似替代原函数。 得多,这时可以用p点附近的一个切线段来近似替代原函数.

736a706a698042da98a4ba1493ea9df7.png

2.2定积分

2.2.1定义

d3e63d12d522411ab0e01545ffc48445.png

 2.2.2几何意义

6340082101204deebb94103063b494af.png

 2.3牛顿莱布尼兹公式

 6e82bcf803154a5380fd7ea3b7f84114.png

 3.泰勒公式与拉格朗日乘子法

3.1泰勒公式

 3.2阶数和阶乘的作用

1.阶数越高函数增长越快。
2.接近原点的区域,低阶对函数起到的作用 反而更大, 在麦克劳林公式的展开式中,在原点附近,低阶项能更好地描述当前点附近的趋势,但离原点越远,走势就越来越依靠高阶,甚至高阶有可能完全压制低阶。
3.麦克劳林公式中各个模块的作用:导数表示下一点的走向,阶数表示曲线该怎样逼近,阶乘控制着各部份起着什么样的作用

3.3拉格朗日乘子法

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值