
机器学习的情境 Scenario
1. Supervised Learning (监督式学习)
\qquad
通常最常用到的方法就是 Supervised Learning
(监督式学习),但是监督式学习需要大量的数据,使用 training data
来找到一个合适的 function
,让我们知道输出和输入的关系是什么。
\qquad
通常使用监督式学习时,我们会告诉机器所有的正确答案,所以需要大量的标记(label
),而缺点是需要大量的人工。
2. Semi-supervised Learning (半监督式学习)
\qquad
当我们手上只有少量的已经标记(labeled
)的 data
,同时又有大量的未标机(unlabeled
)data
,而这些数据仅限于已标记的种类之内(如要区别猫跟狗的 function
,未标记的照片仅限于猫和狗的照片)。
\qquad
在 Semi-supervised Learning
(半监督式学习)的技术中,没有标记的 data
,对机器学习也是有帮助的。
3. Transfer Learning(迁移学习)
\qquad
与 Semi-supervised Learning
(半监督式学习)相同,但是我们的未标记(labeled
)data
不限于已标记的种类。
\qquad
Transfer Learning
(迁移学习)要解决的问题是,与一堆不相关的 data
可以带来甚么样的帮助。
4. Unsupervised Learning(无监督式学习)
\qquad
Unsupervised Learning
(无监督式学习)顾名思义就是在不提供任何 label
的情况下,希望机器学习能够无师自通。也就是说我们给机器大量的输入,却不提供输出,看看在这种情况下机器能够学到什么。
5. Reinforcement Learning(增强式学习)
\qquad
在监督式学习中,我们会告诉机器所有的正确答案,并且手把手的教机器也就是 Learning from teacher
。但是在 Reinforcement Learning
(增强式学习)中,我们没有告诉机器正确的答案是什么,机器只会得到最终的结果是好或不好,这较符合人类真正学习的情境,有别于监督式学习,增强式学习是 Learning from critics
。
\qquad
举例:监督式学习会手把手教导,如果有人说 ”Hello
”,就要回 ”Hi
”,听到 ”Bye bye
” 就回答 “Good bye
”。而增强式学习会让机器直接和客人对话,如果客人生气把电话挂掉的话,机器只能知道这样做错了,他并不知道自己错在哪里。利用评价来学习。