如何利用大数据软件进行甜品店的选址要素收集与分析

本文详细探讨了甜品店选址的重要因素,包括了解目标消费群体、选择高人流区域如商务区、学校附近,以及利用专业商圈评估模型考虑交通便利度、人口密度、竞品分布和消费者画像等。通过分析甜品店数量、学校分布、交通设施、业态分布、人口画像等数据,建议选址于人口密集且竞争不激烈的地方,以确保店铺的盈利潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当下,甜品市场火爆,创业开家甜品店创业者的的致富的好项目之一。

正确的选址为甜品店经营获得竞争优势, 最佳的经营位置要接近支持你生意的顾客,这一点至关重要。

想自己拥有一家甜品店的人,在考虑将店址设在何处时有一个先决的条件,那就是要清楚地知道自己究竟想要做哪种甜品生意,心目中的顾客是哪些类型、哪种层次。假如这些都已成竹在胸,同时拥有的商品知识也非常丰富,再加上一些自信,便能与当地同类型的甜品店抗衡了。当然,要想在抗衡中占据优势,还有很长的路要走。

下面小编就为大家解开甜品店选址法则的重要要素,希望能帮到你。

商务商业集中区域,人流量大,人群的消费水平较高,因此可的甜品店的店址都选择在城市繁华中心、人流必经的城市要道和交通枢纽。

消费群体以青年和中年的顾客为主 在选址过程中,消费群体的定位尤为重要,根据客户定位的特点,确定开店的基本原则。甜品店的主要消费群体是以青年和中年层的顾客为主,基本上学生和上班族居多。

 


年龄比例图(数据来源:http://www.data-dance.com

 

选择商务区、娱乐休闲场所、医院、学校、公交车站、地铁等地方 因为它们可以为店铺带来大量流动客流,能集聚人气。 据统计,商务楼、医院、学校附近的可的便利店收益最高。当然这些区域还需经过评估标准的筛选,才能成为最终的店址。

商圈整体评价 首先应该通过专业的商圈评估模型,对商圈的业态竞争饱和度、平均驻留时长、3公里/5公里客流、交通便利度指数、教育水平指数写字楼数据、医疗分布数据、商圈人口密集度指数、主流消费品牌门店集聚度等进行定量评估。

商圈整体评估指标:

竞争业态:

 


甜品店数量及分布图(数据来源:http://www.data-dance.com

 

 


学校数量及分布图

 

交通设施的数量及分布:

 


交通设施数量及分布情况

 

通过上图可以看出这个区域的交通设施是比较丰富的,交通比较便利。

业态的分布:

 


餐饮业态分布

 

 


购物业态分布

 

通过上图可以看出这个区域的购物业态及餐饮业态都是比较丰富的。

知名的品牌分布:

 


知名餐饮分布图

 

目标消费人群,消费群体覆盖范围广泛。那么选址就适合在居民集中的临街店铺、写字楼、大型购物中心,商贸圈或商业街附近。

 

写字楼分布

 

人口分布数据:

 


人口热力图

 

通过上图可以看出红框区域人口分布还是比较集中的,尽量把店铺开在人密集的地方。

除了人口数量之外还应该关注消费水平,有车无车,等人口画像。

人群画像数据:

 


人群画像数据

 

如上图所示:

常住人口约是240万人,人口密度很高,居民人口约100万人,外地人口占一大部分。

区域内已婚人口占多数,占比是71%,已婚人口占比高,可以正对这类人群推出相应的甜品。

大专及以上学历占比59.63%相对较多,高学历人群在新鲜事物上的接受程度以及自我学习能力具有良好的属性。

 


人群画像数据

 

8K至19K 收入水平范围人群占多数,收入与消费是因果关系,有收入才会有消费,高收入人群消费趋于精品化、个性化消费,他们衣食住行都无忧。

商圈内私家车出行占比75%相对较高, 说明这里的车辆比较多,同时本地人群比较愿意为享受、便捷买单。

消费水平“高”的占多数,愿意消费才会有生意。

总结:最后我们还可以把以上的数据叠加起来看。

 


叠加了人口热力图、交通分布图、写字楼分布图、甜品店分布图

 

通过上图可以看出红框区域是人口及其它指标相对比较密集、但是竞品少的区域可以选择在这些地方开店。

您还可以基于常驻客户画像、民用住宅及房价、周边餐饮业态、周边医疗相关业态、周边教育培训相关业态、周边宠物相关业态、周边景区业态、周边交通相关业态、周边公司分布业态、周边商务住宿业态、周边生活服务业态、周边体育休闲业态、周边政府机构业态、周边公共设施业态,部分消费类提供有人均消费和评分等信息继续分析,小编就不逐一放图说明了,有兴趣您可以自己去看下。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值