前言
为了与课本那难以理解的表述区分,部分定义会用自己的话来解释,以课本为准。
谓词逻辑
命题符号化
存在量词 与 合取 搭配
全称量词 与 蕴含 搭配
析取、合取范式
只要看式子中连接每一项的连接词是∧还是∨,连接词是∧则式子为合取范式,为∨是析取范式。
前束范式
量词(全称、存在)都在前面。
1、使用换名规则:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3aMmTEit-1641653623870)(../../Figure/image-20211213123331936.png)]](https://i-blog.csdnimg.cn/blog_migrate/ea88c25381686f7a228ac0cd3a2bb1ae.png)
2、分配律
全称量词 对 合取 有分配律
存在量词 对 析取 有分配律
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TyhOfD7k-1641653623871)(../../Figure/image-20211213123940990.png)]](https://i-blog.csdnimg.cn/blog_migrate/713bd8d3c9a59edb84c8f42a56afc1c0.png)
3、蕴含等值式(p->q)
前件p,后件q
p的量词做结合律要取反
q的量词做结合律保持不变
例题1
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZEgMZiuu-1641653623872)(../../Figure/image-20211213124526622.png)]](https://i-blog.csdnimg.cn/blog_migrate/251e4f3f6f89116d8c001653a98b5e92.png)
例题2
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4Bo6doy3-1641653623872)(../../Figure/image-20211213125515750.png)]](https://i-blog.csdnimg.cn/blog_migrate/c49bf1df636adc63f69cc9277736da15.png)
构造推理证明
9条推理定律
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sdkDcvWJ-1641653623873)(../../Figure/image-20211213144022969.png)]](https://i-blog.csdnimg.cn/blog_migrate/b05feea098f3a3f0d0544d1712417c63.png)
对于附加律和化简律:
附加律中:A是前提,也就是A为真,所以(A V B)一定也为真:
化简律中:(A ^ B)是前提,也就是A和B都为真,所以A一定为真
全称量词与存在量词 的 添加与消去
∀xA(x):x是指导变元,A是辖域
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-smWrxqIS-1641653623873)(../../Figure/image-20211213133652386.png)]](https://i-blog.csdnimg.cn/blog_migrate/4294f000c15a012fb331a703e5c2dc34.png)
举例:
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SlD0hr49-1641653623874)(../../Figure/image-20211213140416048.png)]](https://i-blog.csdnimg.cn/blog_migrate/9a7d477b3479b78fd1546956b1073d8d.png)
例题1
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mAjWfkBU-1641653623874)(../../Figure/image-20211213141650745.png)]](https://i-blog.csdnimg.cn/blog_migrate/5d83169b28a6e4d5fc407ec0ac8f9f49.png)
例题2
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9RSn1gQF-1641653623874)(../../Figure/image-20211213142854089.png)]](https://i-blog.csdnimg.cn/blog_migrate/50185be5f6c63bb5ad56f774a3a0e944.png)
集合
对称差
A ⊕ B = ( A U B ) - ( A ∩ B )

广义并、广义交
广义并:集合A元素的元素 构成的 集合。
特殊的,当元素不是集合时(就没有元素的元素了):
A = { {a,b,c} , a , {d,e} }
UA = a U { a,b,c,d,e }
广义交:集合A所有元素的公共元素 构成的集合。
特殊的,当元素不是集合时(就没有元素的元素了):
A = { {a,b,c} , a , { c,d,e} }
∩ A = a ∩ { c }
包含排斥原理(容斥原理)
例如全集是:S = A U B U C
|S| = |A| + |B| + |C| - ( |A∩B| + |A∩C| + |B∩C| ) + |A∩B∩C|
例题1
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pMCyQc6G-1641653623881)(../../Figure/image-20211213151149463.png)]](https://i-blog.csdnimg.cn/blog_migrate/225591c5957a22030533eeca27c79096.png)

例题2

![### [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SNkfqork-1641653623884)(../../Figure/image-20211213152603456.png)]](https://i-blog.csdnimg.cn/blog_migrate/e361f6970f48e2ae8c5b61d88897492a.png)
关系
< x,y >
x称为第一元素
y称为第二元素
R为A上的关系:R中的关系的元素都是A中的元素,也就是如果<x,y>∈R,x和y必须∈A
关系运算
复合运算(左复合、右复合)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5uLfhMt4-1641653623886)(../../Figure/image-20211223150436982.png)]](https://i-blog.csdnimg.cn/blog_migrate/f33bcfc1ff6a451ec1e327208c8b24db.png)
运算技巧
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-O22Cs807-1641653623887)(../../Figure/image-20211223150347815.png)]](https://i-blog.csdnimg.cn/blog_migrate/15905efa5729b19d02b7dda276d8b75a.png)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YYx4ASRK-1641653623888)(../../Figure/image-20211213155322384.png)]](https://i-blog.csdnimg.cn/blog_migrate/ca5730e77fe44b05d06740ff28e6e086.png)
另一种写法:
- R○R就是R2,将R写两遍(2次幂,n次幂就写n+1遍)。
- 列出R的所有元素(第一元素和第二元素)
- 将R中的二元关系用线连接
- 只看有连续连接的线(这里【第二层】的1并没有上一层的元素与它相连,所以不用再看它)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-J9tfIsFI-1641653623889)(../../Figure/image-20211213160315339.png)]](https://i-blog.csdnimg.cn/blog_migrate/56cc8980eee81b4f36ee6e67bab6e39a.png)
三种性质
R为A上的关系
自反、对称,传递

本文深入探讨了数学逻辑中的命题符号化、合取范式、前束范式及其转换规则,解析了全称量词与存在量词的使用。此外,详细阐述了图论的基本概念,如集合的对称差、广义并交、容斥原理,以及关系的性质、偏序关系、哈斯图和图的连通性。文中还涵盖了函数的像与完全原像、满射、单射和双射,以及图的欧拉路径和哈密顿回路。
最低0.47元/天 解锁文章
7649





