第一部分 数理逻辑
1.1 命题逻辑
1.1.1 命题逻辑的基本概念
1. 概念
1. 命题:能判断真假的陈述句
2. 命题的真值:真或者假:T或者F;0或者1
3. 真命题:真值为真的命题
4. 假命题:真值为假的命题
5. 简单命题(原子命题):不能再拆分的命题
6. 复合命题:用一些连接词把简单命题连接而成的命题,可以拆分
2. 例题
1.1.2 命题联结词
1. 概念
按五个联结词优先级从大到小
-------------------------------
1.非: 否定的联结词,真值相反
2. 并且:合取的联结词 两命题真值都为真的时候合取为真
3. 或:析取的联结词 两命题真值都为假的时候析取为假
4. 如果..则:蕴含的联结词,条件为假结论为真的时候结果为假。因为当条件为真,结论也为真,结果就是真的;但是条件为假时就不需要管结论,默认整个命题为真
5. 当且仅当:等价的联结词,条件结论真值相等时,命题为真
2. 例题
1. 原子命题直接使用符号表示
2. 或分为兼容或和不兼容或
1.1.3 命题公式
1. 概念
3中命题公式
1. 重言式:不管原子命题真值如何,公式真值永远为1(永真式)
2. 矛盾式:不管原子命题真值如何,公式真值永远为0(永假式)
3. 可满足式:不是矛盾式的就是可满足式
2. 真值表判断公式类型
4.判断一个命题公式类型:常使用真值表法
(1)列出公式中出现的所有原子命题列出来,按二进制从小到达排列真值
(2)列出所有子命题,判断真值
(3)列出命题公式,判断真值
(4)根据命题公式的类型定义判断命题公式类型
3. 例题
1.2 命题逻辑等值演算
1.2.1 等值式
1. 概念
常见等值式:命题A,命题B
1. 双否律:A否定的否定是A本身
2. 幂等律:A合取A逻辑等价为A本身,A析取A逻辑等价为A本身
3. 交换律:A合取B逻辑等价为B合取A,A析取B逻辑等价为B析取A
4. 结合律:
5. 分配律
6. 德摩根律
7. 吸收律
2. 例题:使用等值式判断命题公式类型
使用等值式判断一个命题公式类型:
(1)使用等值式去掉公式中的蕴含和等价
(2)直到公式只有非,析取,合取
(3)列出成真赋值情况,成假赋值情况
(4)根据命题公式的类型定义判断命题公式类型
3. 例题:使用等值式证明两个公式是等值的
使用等值式证明两个公式是等值的:等值演算法
(1)使用等值式去掉右边公式(也可以左边公式)中的蕴含和等价
(2)直到两边公式相同
1.2.2 析取范式,合取范式
1. 概念
1.
2. 析取范式,合取范式中只能含有非且或3中联结词
2.例题:求命题公式的合取范式与析取范式(不唯一)
一个命题公式的析取范式和合取范式是不唯一的
1.2.3 主析取范式,主合取范式
1. 极小项
2. 主析取范式
3. 极大项
4. 主合取范式
5. 例题:真值表法求主合取范式与主析取范式
真值表法
(1)列出所有的小项(合取式子)
(2)找到小项的成真赋值/成假赋值
(3)写出当前公式在成真赋值/成假赋值情况下的真值
1. 求主析取范式
找到公式真值为1的所有小项用析取联结词连接起来
2. 求主合取范式
找到公式真值为0的小项,假设它的成真赋值情况就是对应大项的成假赋值,推导出主合取范式
6. 例题:等值演算法求主合取范式与主析取范式
1. 去掉蕴含等符号,只出现非且或
1.2.4 联结词的完备集
1. 概念
2. 例题:将命题公式化为联结词完备集上的公式
1.3 命题逻辑的推理理论
1.3.1 概念
1.命题逻辑的推理:就是在条件基础上使用推理规则推导得出结论
2. 可存在多个条件
1.3.2 在自然推理系统P中使用推理规则证明
1.3.3 常用推理规则
1.3.4 例题:根据前提推导结论
1.3.5 推理的形式证明,直接证明法
1. 先把命题翻译(符号化)
2. 使用推理规则推理
1.3.6 推理的形式证明,归谬法(反证法)
归谬法:
1. 把结论的否定作为前提
2. 退出矛盾
1.3.7 推理证明,附加前提证明法
如果结论是蕴含形式,那就把前件作为附加条件,推出后件
1.4 谓词逻辑
1.4.1 谓词,谓词表达式
1.概念
1. 个体词可独立存在的客体
2. 谓词:用来说明个体之间性质或个体间关系
3. 谓词有分类:
(1)一元谓词:只和一个客体有联系,比如A(x),只有x一个客体
(2)n元谓词:和n个客体有联系,比如A(x1,x2......xn),有n个客体
4. 个体常元:具体的客体,一般使用小写字母指代,比如A(a),a:某某
5. 个体变元:不具体的客体,一般使用小写字母指代,比如A(x,y),没有指明x,y代表什么
6. 谓词常项:在一个谓词公式中,如果个体使用个体常元表示,那么这个谓词叫谓词常项,比如A(a),A就是谓词常项
7. 谓词常项(命题函数):在一个谓词公式中,如果个体使用个体变元表示,那么这个谓词叫谓词变项,比如A(x),A就是谓词变项
2 例题:写出命题的谓词表达式
步骤:
1. 设出变元谓词表达式
2. 列出客体,用小写字母指代
3. 把客体字母带入变元谓词表达式
1.4.2 全称量词,存在量词
1.概念
2.例题:使用谓词逻辑将命题符号化
规律:
1. 全称量词后面加“-->”,蕴含(如果则)
2. 存在量词后面加“^”,合取(并且)
1.4.3 指导变元,辖域
1.概念
2. 例题:指出谓词表达式中的指导变元,辖域
在同一个谓词表达式中,变元可以是约束变元,也可以是自由变元
1.4.4 量词等价式
1.概念
2. 例题:消去谓词等价式中的量词
1.4.5 谓词公式的前束范式
1. 概念
1. 前束范式就是公式只有前面量词,,后面跟无量词公式
2. 前束范式不唯一
2. 例题: 求谓词公式的前束范式
1.4.6 谓词演算的推理
1. 规则
2. 例题:直接证明法: 根据前提谓词逻辑推理证明结论
1. 写出公式
2. 写出公式来源
2. 例题:归谬法: 根据前提谓词逻辑推理证明结论
1. 先加入结论的否定
2. 推理出矛盾
2. 例题:先翻译命题,根据前提使用谓词逻辑推理证明结论
1. 先把语句翻译成谓词表达式
2. 得到前提,结论
3. 证明