谓词逻辑——离散数学part 2

谓词

命题中把描述个体词的特性或关系部分称为谓词。如果含有n个个体词,则称为为n元谓词。一般地,一元谓词表达了个体词的性质,多元谓词表达了个体词之间的关系。
显然谓词不是命题,只有填入个体词后才能成为命题,所以把已经确定真值的命题看作0元谓词。
命题函数:eg A(x):x是人。 B(x,y):x+y=1。
谓词的函数表示形式。简单命题函数的定义域为所有个体词的集合,即个体域的论述范围,也称为个体域,值域为命题的集合。
简单命题函数经过联结词运算后构成复合命题函数称为命题函数。
注意:不说明个体域就指全总个体域,相当于全宇宙。

量词

全称量词

∀ x \forall{x} x,表示“所有的x”,“每一个x”,“凡是x”,“任意的x”
已知命题函数不是命题,但在 ∀ x \forall{x} x的作用下,仅含变量x的命题函数为命题,有真值,全称量词约束了x的变量作用。
注意:当个体域采用全总个体域时,必须使用特性谓词,且在全称量词的作用下,特性谓词和命题函数之家必须采用蕴含联结词而不能用合取。
eg “所有狼都是犬科动物”,W(x):x是狼 D(x): x是犬科动物 当个体域不是狼而是全总个体域时,命题表示为 ( ∀ x ) ( W ( x ) → D ( x ) ) (\forall{x}) (W(x)→D(x)) (x)(W(x)D(x))

存在量词

∃ x \exists{x} x,表示存在着x,有些x。
与全称量词一样,一个含有变量x的命题函数在存在量词的作用下,x不在起变量的作用,即存在量词约束了x的变量作用。
注意:当个体域采用全总个体域时,必须使用特性谓词,且在存在量词的作用下,特性谓词和命题函数之家必须采用合取联结词

消除量词

注意多个量词时消除的先后顺序
在这里插入图片描述
注意:量词顺序
eg
∀ x ∃ y P ( x , y ) \forall{x}\exists{y}P(x,y) xyP(x,y) :对任意的x,存在y使得满足P(x,y)
∃ x f o r a l l y P ( x , y ) \exists{x}forall{y}P(x,y) xforallyP(x,y):存在x,使得对任意的y,都有P(x,y)

约束元和自由元

( ∀ x ) ( P ( x ) → Q ( x ) ) (\forall{x})(P(x)→Q(x)) (x)(P(x)Q(x)),由于全称量词的作用,约束了x的变元作用,这种情况下,x为约束出现,称x为约束元, ( ∀ x ) (\forall{x}) (x)后的范围称为它的作用域或辖域。同样,受存在量词的约束的变元为约束元。没有受量词约束的变元为自由元。

在一个谓词公式中,一个变元可能是约束元,也可能是自由元,为了避免混乱,可以对约束元进行换名或对自由元进行代入。
换名:遵循①对约束元x进行换名时,更改名称的范围为 ∀ x \forall{x} x(或 ∃ x \exist{x} x)中的x以及量词作用域中所出现的所有x,在量词作用域外的部分不用换名。②换名一定要改成作用域中没出现的名称。
代入:对谓词公式中出现该自由元的每一处都进行更改。

等价式

定义:给定两个谓词公式A和B,如果它们有共同的个体域,且对A和B的任意一组变元进行赋值之后所得命题的真值相同,则谓词公式A和B等价,记作A<=>B.
命题演算中的等价公式都可以推广到谓词演算中使用。
1.否定与量词(量词转换律)
¬ ( ∀ x ) P ( x ) < = > ( ∃ x ) ¬ P ( x ) ¬(\forall{x})P(x)<=>(\exists{x})¬P(x) ¬(x)P(x)<=>(x)¬P(x)
¬ ( ∃ x ) P ( x ) < = > ( ∀ x ) ¬ P ( x ) ¬(\exists{x})P(x)<=>(\forall{x})¬P(x) ¬(x)P(x)<=>(x)¬P(x)
2.析取、合取与量词 (量词分配律)
( ∀ x ) ( A ( x ) ∧ B ( x ) ) < = > ( ∀ x ) A ( x ) ∧ ( ∀ x ) B ( x ) (\forall{x})(A(x)∧B(x))<=>(\forall{x})A(x)∧(\forall{x})B(x) (x)(A(x)B(x))<=>(x)A(x)(x)B(x)
( ∃ x ) ( A ( x ) ∨ B ( x ) ) < = > ( ∃ x ) A ( x ) ∨ ( ∃ x ) B ( x ) (\exists{x})(A(x)∨B(x))<=>(\exists{x})A(x)∨(\exists{x})B(x) (x)(A(x)B(x))<=>(x)A(x)(x)B(x)

永真蕴含式

设P,Q是谓词公式,若P→Q为永真式,则P永真蕴含Q,记为P=>Q
( ∀ x ) A ( x ) ∨ ( ∀ x ) B ( x ) = > ( ∀ x ) ( A ( x ) ∨ B ( x ) ) (\forall{x})A(x)∨(\forall{x})B(x)=>(\forall{x})(A(x)∨B(x)) (x)A(x)(x)B(x)=>(x)(A(x)B(x))
( ∃ x ) ( A ( x ) ∧ B ( x ) ) = > ( ∃ x ) A ( x ) ∧ ( ∃ x ) B ( x ) (\exists{x})(A(x)∧B(x))=>(\exists{x})A(x)∧(\exists{x})B(x) (x)(A(x)B(x))=>(x)A(x)(x)B(x)

前束范式

在谓词公式中,如果所有量词都出现在公式的最前面,且它的辖域为整个公式,则称谓词公式为前束范式。
谓词公式转化为前束范式的步骤:
①先把联结词都转化为¬,∧,∨
②利用量词转化律和摩根律将¬都移到简单命题函数的前面
③利用约束元的换名规则和自由元的代入使得所有约束元和自由元不同名,利用等价式
④将所有量词以在此公式出现的顺序移到公式最前面

谓词逻辑的推理理论

在谓词演算中,命题演算推理的推理规则P,TP,CP规则也适用,但在谓词演算中,需要添加对量词处理的规则。
①全称指定规则(US)
( ∀ x ) P ( x ) → P ( c ) (\forall{x})P(x)→P(c) (x)P(x)P(c),但是要注意c是任意的个体
②全称推广规则(UG)
③存在指定规则
( ∃ x ) P ( x ) → P ( c ) (\exists{x})P(x)→P(c) (x)P(x)P(c),c是个体域中某个确定的个体
④存在推广规则

例题:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yun_gao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值