知识点记录blog

本文探讨了NOKOV的光学三维动作捕捉系统如何实现多智能体之间的天地一体化网络协同控制,涉及多智能体集群编队、动作跟随功能以及自主避障技术,强调了知识分享与错误修正的重要性。
摘要由CSDN通过智能技术生成

通过请教他人或者从其他资源上看到的知识,然后随手对其进行总结,内容难免有误,欢迎指正!
RGB格式视频转H264的目的
NOKOV(度量)光学三维动作捕捉系统
多智能体的天地一体化网络协同控制
多智能体集群与编队、多智能体动作跟随、多智能体自主避障
旋转矩阵(SO(3))

在三维空间中,任何旋转都可以由绕某一轴旋转一定角度来表示。这样的旋转只有三个自由度:旋转轴的方向(两个自由度,因为轴的方向是单位向量,长度固定为1)和旋转的角度(一个自由度)。然而,当我们使用旋转矩阵(3x3的矩阵)来表示这种旋转时,需要9个元素(矩阵中的每个元素)。

冗余性解释:

旋转矩阵的9个元素并不是完全独立的。它们必须满足特定的数学条件,即矩阵必须是正交矩阵(矩阵的转置等于其逆矩阵)且行列式为1。这些条件确保了旋转矩阵能够正确地表示三维空间中的旋转,并且没有缩放或扭曲。
因此,虽然旋转矩阵有9个元素,但其中只有3个自由度是独立的,其余的元素都是这3个自由度的函数。

变换矩阵:变换矩阵(通常是4x4的齐次变换矩阵)用于表示三维空间中的平移、旋转、缩放等变换。它包含16个元素。

自由度分析:

在三维空间中,一个刚体的变换(包括平移和旋转)总共有6个自由度:3个平移自由度和3个旋转自由度。
变换矩阵的16个元素中,同样存在冗余。例如,左上角的3x3子矩阵通常用于表示旋转(或旋转加缩放),而最后一列的前三个元素用于表示平移。右下角的元素通常是1,用于保持齐次坐标的归一化。
因此,虽然变换矩阵有16个元素,但其中只有6个自由度是独立的,用于表示三维空间中的基本变换。

总结

旋转矩阵和变换矩阵的冗余性是由于它们需要满足特定的数学条件(如正交性、行列式值等)来确保它们能够正确地表示三维空间中的旋转和变换。这种冗余性虽然增加了表示的复杂性,但也使得这些矩阵在计算和变换操作中更加灵活和强大。

在三维空间中,一个旋转轴的方向可以由一个单位向量来表示。单位向量是模长为1的向量,它仅表示方向而不包含长度信息。因此,要确定一个旋转轴的方向,我们实际上是在三维空间的一个单位球面上选择一个点,这个点对应的向量就是旋转轴的方向。
解释两个自由度

在三维空间中,一个向量有三个分量(例如,在直角坐标系中,这三个分量分别是x、y、z),但由于单位向量的模长固定为1,这三个分量之间就存在一种约束关系。具体来说,这三个分量必须满足:
x2+y2+z2=1

这个方程描述了一个单位球面。在单位球面上选择一个点来确定旋转轴的方向时,我们实际上只有两个自由度,因为一旦确定了前两个分量(例如,x和y),第三个分量(例如,z)就通过上面的方程唯一确定了(注意,这里存在正负两个解,但旋转轴的方向是确定的,因为向量和它的负向量表示相同的方向)。
直观解释

第一个自由度:可以想象成在单位球面上选择一个“纬度圈”(即与z轴平行的圆)。这个选择决定了旋转轴是在哪个“水平面”上。

第二个自由度:在选定的“纬度圈”上选择一个点。这个点确定了旋转轴在该平面上的具体方向。

实际应用

在实际应用中,我们经常使用欧拉角、四元数或旋转矩阵来表示三维旋转。其中,欧拉角(包括俯仰角、偏航角和滚转角)虽然直观,但在处理万向锁问题时可能会遇到困难。四元数则提供了一种更稳定、更高效的旋转表示方法,它内部包含了旋转轴和旋转角度的信息,但不需要直接处理单位向量的两个自由度问题。旋转矩阵则直接给出了旋转后的坐标变换关系,但计算上可能更为复杂。

总之,旋转轴的方向由两个自由度确定,这两个自由度对应于在单位球面上选择一个点的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_52765390

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值