一.语义分割前言
常见分割任务:
语义分割:像素级别的分类,只分割目标,对目标不进行分类 FCN
实例分割:像素级别的分类,对目标进行分类,对同一类别的不同个体进行区分 Msak R-CNN
全景分割:不只对图像进行分割,还包含对图像的上下文信息的理解,以及对其他背景等进行分类 Panoptic FPN
p模式,即一个单通道的图像,每个像素都对应一个颜色,0表示背景,1表示前景,目标边缘处用的像素值为225
真实标签和预测标签:真实标签是人工标注的,预测标签是模型预测的。这个表格表示了真实标签和预测标签之间的对应关系,其中对角线表示预测正确的个数,非对角线表示预测错误的个数。
这是第一个指标/ 目标正确率:预测正确的个数除以元素总个数
这是第二个指标/每个类别的正确率:预测各个标签正确的个数除以其单独元素总个数
mean iou:对于第一个 :分子是预测正确的个数,分母是真实总个数+预测为0(有错误)的总个数-预测正确为0的个数
语义分割标注工具:
Labelme:人工标记
GitHub - wkentaro/labelme: Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
EISeg半自动标注工具 Contrib-EISeg:对于常见的不需要一个个描
GitHub - PaddlePaddle/PaddleSeg: Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, etc.
个人学习使用,如有抄袭联系删除
图片借鉴 :Happy_Cabbage-CSDN博客