【高数】级数性质说明、找同阶通项判敛散性、几何级数p级数记忆法、常用例子、审敛法

目录

一、级数性质相关

1. 判敛散性的一个简易方法

2. 几何级数记忆法

3. p级数记忆法

二、常用例子

三、审敛法

四、小结


一、级数性质相关

1. 判敛散性的一个简易方法

针对课本上的级数性质中的某条进一步说明:

级数的数列中的各项同乘一个非零常数,不改变级数的敛散性。(即收敛的仍收敛,发散的仍发散。)

注:在需要判断敛散性时,因为不知道往收敛还是发散的方向证明,所以需要找到相对题干级数更为小发散,或大收敛的级数,最差的情况下要找到两个级数

在用正项级数比较审敛法的极限形式时,本质上是在看,分子分母上的两个级数通项,在n→∞时,谁是更为高阶的无穷小。在高阶低阶的情况下,与比较审敛法并无差异。但是当二者同阶时,也即两级数的极限是非零常数倍的关系,此时由上可知,敛散性相同

结合上述对级数性质的说明,可以用这样一个简便的方法。即找到与待判级数通项的同阶的通项,用新找到的级数的敛散性判断,则减少了工作量。

2. 几何级数记忆法

几何级数,就是等比级数,可以结合等比数列求和公式来记忆。公比 q ≥ 1 或 q ≤ -1,首先通项的极限就是∞了,该和不存在。而 -1 <q <1,收敛,此时通项极限是0,且可由公式得出极限。

(引自百度百科:https://baike.baidu.com/item/%E5%87%A0%E4%BD%95%E7%BA%A7%E6%95%B0

3. p级数记忆法

课本上是说,p>0的情况,但事实上,p<0显然是有意义的,且通项的极限是∞,因此是发散的。所以可以简单记忆 p>1,收敛,其余都发散不过大多数教材及文章中,都将p级数归为正项级数,此时又称 “调和级数 ”,所以只讨论了p>0的情况,具体范围如何取,应视题目而定。

(引自百度百科:https://baike.baidu.com/item/p%E7%BA%A7%E6%95%B0

二、常用例子

1. 选择题,常用的例子整理(这里省略上下标)。

发散:\sum \frac{1}{nlnn}, \sum \frac{1}{\sqrt{n}} (因为p级数)

收敛(指它本身收敛,而未必绝对收敛):\sum (-1)^{n}\frac{1}{\sqrt{n}}

2. 一个很厉害很好记的级数:

\sum_{n=1}^{\infty }\frac{1}{n^{a}ln^{b}n},与它同敛散的反常积分是\int_{c}^{+\infty }\frac{dx}{x^{a}ln^{b}n} (c>1)

其敛散性与a、b有关:

可以想成因为 x 是比 lnx 大许多的无穷大,所以基本上先由它决定敛散性。所以先看a。

  • a>1, 收敛。a<1, 发散。
  • a=1,此时看b。
    • b>1, 收敛。b<1, 发散。

疑问:级数和反常积分的关系?后面再次复习反常积分时总结。

三、审敛法

在这里放一些总结得比较全的文章,指路链接:

《级数收敛的判别方法(知识汇总)》https://m.xianjichina.com/news/details_83466.html

《第五讲 交错级数、绝对收敛和条件收敛》https://blog.csdn.net/qq_23940575/article/details/84610895


《P-达朗贝尔判别法及其应用》https://www.ixueshu.com/document/7ea4c75acbc0c8e9381c0aab81c124ec.html

可以用比值判别法的,用根值判别法一定可以。反之未必。

\sum_{n=1}^{\infty }\frac{2+(-1)^{n}}{2^{n}},诸如此类带有 C+(-1)^n 的通项,用比值判别法会因为奇偶项而有所不同,比值时而>1,时而<1。但是用根值判别法,便可忽略此项,因为开n次方后分子得1,而分母是2。

四、小结

1. 级数的数列中的各项同乘一个非零常数,不改变级数的敛散性。因此找到与待判级数通项的同阶的通项,二者敛散性相同。

2. 几何级数:-1 <q <1,收敛,其余发散。p级数,p>1,收敛,其余都发散。

3. 常用例子:\sum \frac{1}{nlnn}, \sum \frac{1}{\sqrt{n}},  \sum (-1)^{n}\frac{1}{\sqrt{n}},  \sum_{n=1}^{\infty }\frac{1}{n^{a}ln^{b}n},  \int_{c}^{+\infty }\frac{dx}{x^{a}ln^{b}n} (c>1)

4. 可以用比值判别法的,用根值判别法一定可以。反之未必。

已标记关键词 清除标记
相关推荐
四六级在大学bai各类考试中占有相当du重要的地位。在大四在校签订单位的时候,绝大多zhi数公司都有英语要求:dao过四级。真正进入社会以后,随着现在英语的普及,很多地方,很多事情,都会用到英语,具有一定的英语水平,能够让你在工作中出色不少。 大学英语四六级对毕业后求职的重要: 关系到能不能拿到毕业证 我不敢说全国,最起码在广东,重本的211和985的名牌大学,大部分四六级证书是和毕业证挂钩的。可能还没到就业,万一你的全国英语四级考试达不到425分,你就拿不到你的毕业证书。所以四六级你说重不重要? 是一半企业的敲门砖 (1)随着大学生毕业人数的增长,社会面临的就业压力越来越大,企业为了挑选人才,国企和外企一般都会把四六级证书作为一个最低的门槛。 (2)虽然说全国英语四六级证书只是一张纸,并不能证明一个人的英语水平,但是四级的合格线设在425分对于国内大学生英语要求还是比较低的。所以如果你没有过英语四级的证书,很多企业在筛选简历时就会把你直接out了。 (3)可以说如果你没有过大学英语四六级的考试,你的前途就暗淡了一半,很多企业都不会为你敞开大门。当然,如果你有关系的话什么证书都是扯淡。 海外合作是大势所趋 (1)现在这个社会,海外人员越来越多,海外合作的公司也越来越多,走在街上,说不定一天能遇到好几个问路的外国人。所以如果你没有能证明你英语能力的一纸证书,你很难向公司证明你的外语水平和能力。 (2)在北上广深,就连现在的计程车司机也有一定的英语基础,否则生意就很难做下去。所以说在日常生活中,我们也有很多机会和外国人打交道,在这个海外合作是大势所趋的年代,英语能力更为重要。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页