【用积分判别法证明p级数的敛散性】

1 篇文章 0 订阅
1 篇文章 0 订阅

本菜鸡的第一篇博客,请多多关照~

用积分判别法证明p级数的敛散性


前言

以下是关于我对p级数的敛散性的证明的个人理解,可能有不严谨之处,欢迎各位大佬指正。

先给出结论

p 级 数 ∑ i = 1 ∞ 1 n p ( p > 1 收 敛 , p ≤ 1 发 散 ) p级数\sum_{i=1}^∞ \frac{1}{n^p}(p>1收敛,p\leq1发散) pi=1np1(p>1p1)

证明过程

我用的是积分判别法证明。
根据p级数构造函数
f ( x ) = 1 n p , n ∈ [ 1 , + ∞ ) f (x)=\frac{1}{n^p},n\in[1,+∞) f(x)=np1n[1,+)
显然,f(x)单调递减,且是一个非负的连续函数(满足积分判别法的要求),所以级数和定积分 ∫ 1 + ∞ f ( x ) d x \int_1^{+∞} {f(x){\rm d}x} 1+f(x)dx同敛散。

分类讨论p:
①当p=1, f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1不定积分 ∫ 1 + ∞ 1 x d x = ln ⁡ x ∣ 1 + ∞ = + ∞ \int_1^{+∞} {\frac{1}{x}{\rm d}x}=\ln x|^{+∞}_1=+∞ 1+x1dx=lnx1+=+发散,从而原级数发散。

当p不等于0, f ( x ) = 1 x p f(x)=\frac{1}{x^p} f(x)=xp1记定积分 I = ∫ 1 + ∞ ( 1 x ) p d x = lim ⁡ b → + ∞ 1 1 − p [ b ( 1 − p ) − 1 ] I=\int_1^{+∞} {(\frac{1}{x})^p{\rm d}x}=\lim_{b \to +∞} \frac{1}{1-p} [b^{(1-p)}-1] I=1+(x1)pdx=b+lim1p1[b(1p)1],
②当p<1,(1-p)>0, I = lim ⁡ b → + ∞ 1 ∣ 1 − p ∣ [ b ∣ 1 − p ∣ − 1 ] I=\lim_{b \to +∞} \frac{1}{|1-p|}[ b^{|1-p|}-1] I=b+lim1p1[b1p1]
故I发散(因为I趋于+∞),从而原级数发散。

③当p>1,(1-p)<0, I = lim ⁡ b → + ∞ − 1 ∣ 1 − p ∣ [ 1 b ∣ 1 − p ∣ − 1 ] = 1 ∣ 1 − p ∣ I=\lim_{b \to +∞} -\frac{1}{|1-p|}[ \frac{1}{b^{|1-p|}}-1]=\frac{1}{|1-p|} I=b+lim1p1[b1p11]=1p1故I收敛,从而原级数收敛。

证毕。


总结

本人第一次写博客,加上比较菜鸡,如果有写的不对的地方,或者思路不对,欢迎大佬们批评指正,大家一起进步。

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值