拉普拉斯修正平滑方法
在朴素贝叶斯分类器中,计算条件概率 P ( x ∣ y ) P(x|y) P(x∣y)时,如果在某个类别下没有观测到某个特征值,那么P(x|y)的值就会变成0,这会导致朴素贝叶斯分类器失去分类能力。例如,在周志华老师的西瓜书的第7.3章提到,在西瓜数据集3.0中对于一个“敲声=清脆”的测试用例,有 P ( 敲声 = 清脆 ∣ 好瓜 = 是 ) P(敲声=清脆|好瓜=是) P(敲声=清脆∣好瓜=是)=0,因此基于朴素贝叶斯公式,无论该样本的其它属性是什么,它的分类结果都会是“好瓜=否”。为了解决这个问题,我们需要对条件概率进行平滑,使得即使在没有观测到某个特征值的情况下,对应的概率值也不会为0。
**拉普拉斯修正的本质是给每个计数加上一个较小的数,该值通常为1,既保证了每个属性概率非零又保证了概率和为1。**假设用N表示训练集中总共的分类数;属性 a i a_i ai可能的取值数用