Alleviating Hallucinations of Large Language Models through Induced Hallucinations
https://github.com/hillzhang1999/ICD
背景
先前研究认为的幻觉来源:
- LLMs 的预训练目标:基于最大似然的下一个词预测。这种目标可能会导致 LLMs 对训练数据中出现的非事实信息分配非零概率,或者过度依赖从训练语料库中学习到的表面模式,而不是记忆现实世界的事实
- 知识不足:减轻这种情况的一种直观想法是通过事后监督微调 (SFT) 向 LLM 注入更多知识(然而,SFT 也可能会无意中鼓励 LLM 产生幻觉,迫使它们回答超出其知识范围的问题,同时通过SFT灌输知识需要大量事实数据,在计算上具有挑战性)
先前的缓解幻觉方法:
- 高质量训练数据
- 从外部反馈中进行强化学习
- 检索增强生成
- 使用模型不确定性
OpenAI 的 SuperAlignment 团队揭示了弱到强的泛化现象(Burns 等人,2023),表明弱模型有可能激发出强模型的能力
受其启发,我们通过微调或零样本提示,可以很容易地从大型语言模型 (LLM) 中诱导出幻觉,而对幻觉进行惩罚可以有效地引导 LLM 生成更多的事实性内容
对比解码(CD