幻觉消除论文阅读:通过诱导幻觉缓解大型语言模型的幻觉

Alleviating Hallucinations of Large Language Models through Induced Hallucinations

https://github.com/hillzhang1999/ICD

背景

先前研究认为的幻觉来源:

  • LLMs 的预训练目标:基于最大似然的下一个词预测。这种目标可能会导致 LLMs 对训练数据中出现的非事实信息分配非零概率,或者过度依赖从训练语料库中学习到的表面模式,而不是记忆现实世界的事实
  • 知识不足:减轻这种情况的一种直观想法是通过事后监督微调 (SFT) 向 LLM 注入更多知识(然而,SFT 也可能会无意中鼓励 LLM 产生幻觉,迫使它们回答超出其知识范围的问题,同时通过SFT灌输知识需要大量事实数据,在计算上具有挑战性)

先前的缓解幻觉方法:

  • 高质量训练数据
  • 从外部反馈中进行强化学习
  • 检索增强生成
  • 使用模型不确定性

OpenAI 的 SuperAlignment 团队揭示了弱到强的泛化现象(Burns 等人,2023),表明弱模型有可能激发出强模型的能力

受其启发,我们通过微调或零样本提示,可以很容易地从大型语言模型 (LLM) 中诱导出幻觉,而对幻觉进行惩罚可以有效地引导 LLM 生成更多的事实性内容

对比解码(CD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值