InstructGraph:以图为中心的指令调整和偏好调整来提升大型语言模型(ACL 2024)
https://github.com/wjn1996/InstructGraph
目前的方法能够将图转为序列形式数据(如自然语言),但是难以很好的转回图的形式
本文提出了将图表示为代码语言,实现相互转换
此外,分别探讨了图推理和生成中的四个幻觉问题。我们使用直接偏好优化 (DPO) 来执行偏好对齐
对图推理(RoG):忠实可解释的大语言模型推理方法(ICLR2024)
https://github.com/RManLuo/reasoning-on-graphs
推理图(Reasoning on Graphs, RoG)提出了一个计划-检索-推理框架,该框架的核心流程包括以下几个步骤:
- 规划生成(Planning Generation):给定一个问题,首先使用大型语言模型(LLM)生成若干个基于知识图谱(KG)的关系路径作为推理规划。这些关系路径捕捉了实体间的语义关系,并被用作推理答案的规划。
- 路径检索(Path Retrieval):利用生成的推理规划,从知识图谱中检索有效的推理路径。这一步确保LLM能够获取最新的知识,并基于这些路径进行推理。
- 推理(Reasoning):基于检索到的推理路径,LLM进行推理并生成答案,同时解释推理过程。
通过将关系路径视为计划,将我们的RoG描述为一个优化问题,其目的是通过生成关系路径z作为计划,最大化从知识图G中推理出问题q的答案的概率
两个组成部分:
1)一个规划模块,该模块生成以KGs为基础的关系路径作为忠实计划;
2)检索推理模块,首先根据计划从KGs中检索有效的推理路径,然后根据检索到的推理路径进行忠实推理,生成具有可解释解释的答案
规划模块:在规划优化中,我们的目标是将知识从KGs中提取到llm中,以生成忠实关系路径作为规划。这可以通过最小化忠实关系路径Q(z)的后验分布的KL散度来实现,这可以通过KGs中的有效关系路径来近似。
推理模块·:推理模块以问题q和一组推理路径Wz生成答案a。同样,我们设计推理指令提示符,引导llm根据检索到的推理路径Wz进行推理。
附RoG解读:
https://www.53ai.com/news/knowledgegraph/2024071214865.html
https://blog.csdn.net/weixin_44466434/article/details/137135162
https://www.53ai.com/news/knowledgegraph/2024071214865.html