LLM如何理解图数据? Graph+LLM综述

InstructGraph:以图为中心的指令调整和偏好调整来提升大型语言模型(ACL 2024)

https://github.com/wjn1996/InstructGraph

目前的方法能够将图转为序列形式数据(如自然语言),但是难以很好的转回图的形式

本文提出了将图表示为代码语言,实现相互转换

此外,分别探讨了图推理和生成中的四个幻觉问题。我们使用直接偏好优化 (DPO) 来执行偏好对齐

对图推理(RoG):忠实可解释的大语言模型推理方法(ICLR2024)

https://github.com/RManLuo/reasoning-on-graphs
在这里插入图片描述

推理图(Reasoning on Graphs, RoG)提出了一个计划-检索-推理框架,该框架的核心流程包括以下几个步骤:

  • 规划生成(Planning Generation):给定一个问题,首先使用大型语言模型(LLM)生成若干个基于知识图谱(KG)的关系路径作为推理规划。这些关系路径捕捉了实体间的语义关系,并被用作推理答案的规划。
  • 路径检索(Path Retrieval):利用生成的推理规划,从知识图谱中检索有效的推理路径。这一步确保LLM能够获取最新的知识,并基于这些路径进行推理。
  • 推理(Reasoning):基于检索到的推理路径,LLM进行推理并生成答案,同时解释推理过程。

通过将关系路径视为计划,将我们的RoG描述为一个优化问题,其目的是通过生成关系路径z作为计划,最大化从知识图G中推理出问题q的答案的概率

两个组成部分

1)一个规划模块,该模块生成以KGs为基础的关系路径作为忠实计划;

2)检索推理模块,首先根据计划从KGs中检索有效的推理路径,然后根据检索到的推理路径进行忠实推理,生成具有可解释解释的答案

规划模块:在规划优化中,我们的目标是将知识从KGs中提取到llm中,以生成忠实关系路径作为规划。这可以通过最小化忠实关系路径Q(z)的后验分布的KL散度来实现,这可以通过KGs中的有效关系路径来近似。

推理模块·:推理模块以问题q和一组推理路径Wz生成答案a。同样,我们设计推理指令提示符,引导llm根据检索到的推理路径Wz进行推理。

附RoG解读
https://www.53ai.com/news/knowledgegraph/2024071214865.html
https://blog.csdn.net/weixin_44466434/article/details/137135162
https://www.53ai.com/news/knowledgegraph/2024071214865.html

<

### 关于大型语言模型的顶级会议论文推荐 在学术界,涉及大型语言模型(Large Language Models, LLMs)的研究通常发表在人工智能领域最顶尖的会议上。这些会议包括但不限于 NeurIPS (Conference on Neural Information Processing Systems)[^4]、ICLR (International Conference on Learning Representations)[^5] 和 ACL (Annual Meeting of the Association for Computational Linguistics)[^6]。 以下是几个重要的研究方向及其对应的顶级会议: #### 1. 大型语言模型的基础理论与架构设计 这类研究主要探讨如何构建更高效、更大规模的语言模型以及优化其训练过程。NeurIPS 是该主题的主要发布平台之一。例如,在最近几年中,有关 Transformer 架构扩展的工作频繁出现在此会议上[^7]。 #### 2. 提升LLMs性能的技术方法 为了提高大规模预训练模型的效果,许多技术被提出并验证有效,比如微调策略、蒸馏技术和参数效率迁移学习等。ICLR 成为此类创新成果的重要展示场所。一项值得注意的是关于自监督学习进展的文章也常在此类场合分享[^8]。 #### 3. 应用场景探索与社会影响分析 随着 LLM 技术日益成熟,它们正广泛应用于各个行业之中;同时对其潜在的社会伦理问题也需要深入讨论。ACL 不仅关注自然语言处理方面的技术创新还重视跨学科合作来解决实际应用中的挑战[^9]。 此外,《Proceedings of Machine Learning Research》作为开放获取期刊系列也为高质量机器学习研究成果提供了良好渠道[^10]。 ```python import requests def fetch_top_conference_papers(conference_name): url = f"https://api.semanticscholar.org/graph/v1/paper/search?query={conference_name}&fields=title,url" response = requests.get(url).json() return [(paper['title'], paper['url']) for paper in response['data']] papers = fetch_top_conference_papers('large language model') for title, link in papers[:5]: print(f"- [{title}]({link})") ``` 上述脚本可以帮助快速检索到特定关键词相关的顶会文章链接列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值