深度学习
文章平均质量分 78
本人的学习记录
Eric Zane
Email: tamako.eric@gmail.com 有问题可以一起探讨学习
博客如有侵权,请及时联系我,谢谢。
展开
-
匹配网络matching-networks
左侧为support set,右侧为query set,输入一张查询集(query set)照片去匹配左侧支持集中(support set)哪一张是最为相似的。蓝色狗对应label [1,0,0,0] 黄色狗对应label [0,1,0,0] 橙色狗对应label [0,0,1,0]算出来发现第四个类别的权重大小为[0.1 0.3 0.2 0.5]中的0.5,权重最高,故输入的图像对应第四个类别。红色狗对应label [0,0,0,1] 本来正常对应下来蓝黄橙红应该分别是0 1 2 3。原创 2023-06-05 18:00:43 · 164 阅读 · 1 评论 -
三步完成训练一个吸烟检测
三步完成吸烟模型训练原创 2024-04-25 17:37:08 · 1364 阅读 · 0 评论 -
迁移学习名词解释
领域泛化的目标是从若干个具有不同数据分布的数据集(领域)中学习一个泛化能力强的模型,以便能够在未知的测试集上取得较好的效果。换句话说,领域泛化的目标是让模型在未见过的领域中也能表现良好,而不仅仅在训练时使用的领域中表现好。它指的是在源领域SourceDomain训练好一个模型A,将模型A的参数部分或全部复制到模型B,这称为使用了预训练。目前没有对于迁移学习统一的定义,广义上讲,只要是利用了已有的知识、模型、结构来帮助我们在目标数据集上学习,这个过程就能够称为迁移学习。原创 2024-05-06 21:16:49 · 560 阅读 · 1 评论 -
迁移学习+数据增强
迁移学习运用场景:假设我们是要做猫狗分类,要分类的对象是现实世界中的猫狗,但是这部分的图片数量很少,所以我们希望借助与它相似的图片来辅助我们进行猫狗分类。此时我们可以利用相似的领域的如大象与老虎,或者是相似的任务动漫形象的猫狗,通过这些相似的图片来进行迁移学习,来完成目标任务中现实世界的猫狗分类。原创 2024-05-04 20:05:23 · 483 阅读 · 1 评论 -
迁移学习预训练微调实验测试对比
文件路径:/home/aistudio/work/PaddleDetection/configs/ppyolo/_base_/ppyolov2_r50vd_dcn.yml。文件路径/home/aistudio/work/PaddleDetection/configs/ppyolo/ppyolov2_r50vd_dcn_voc.yml。文件路径:/home/aistudio/work/PaddleDetection/configs/ppyolo/_base_/optimizer_365e.yml。原创 2024-05-02 18:02:20 · 442 阅读 · 3 评论