Hadoop 深入浅出 ---- MapReduce(3)

5 篇文章 0 订阅
3 篇文章 0 订阅

MapReduce学习

MapReduce

1.MapReduce概述

1.1MapReduce定义

  • MapReduce 是一个分布式运算程序的编程框架,是用户开发“基于 Hadoop 的数据分析应用”的核心框架。

  • MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个 Hadoop 集群上。

1.2MapReduce 优缺点

1.2.1优点
1. MapReduce 易于编程

它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得 MapReduce 编程变得非常流行。

2. 良好的扩展性

当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

3.高容错性

MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop 内部完成的。

4.适合PB级以上海量数据的离线处理

可以实现上千台服务器集群并发工作,提供数据处理能力。

1.2.2 缺点
1.不擅长实时计算

MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。

2.不擅长流式计算

流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,不能动态变化。这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。

3.不擅长DAG (有向无环图)

​ 多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘,会造成大量的磁盘 IO,导致性能非常的低下。

1.3 MapReduce 核心思想

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-e3qexenr-1645577695334)(C:\Users\13752\AppData\Roaming\Typora\typora-user-images\image-20211207162119227.png)]

(1)分布式的运算程序往往需要分成至少 2 个阶段。

(2)第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。

(3)第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段的所有 MapTask 并发实例的输出。

(4)MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业务逻辑非常复杂,那就只能多个 MapReduce 程序,串行运行。

总结:分析 WordCount 数据流走向深入理解 MapReduce 核心思想。

1.4MapReduce 进程

一个完整的 MapReduce 程序在分布式运行时有三类实例进程:

(1)MrAppMaster:负责整个程序的过程调度及状态协调。

(2)MapTask:负责 Map 阶段的整个数据处理流程。

(3)ReduceTask:负责 Reduce 阶段的整个数据处理流程。

1.5 官方WordCount源码

采用反编译工具反编译源码,发现 WordCount 案例有 Map 类、Reduce 类和驱动类。且数据的类型是 Hadoop 自身封装的序列化类型。

1.6常用数据序列化类型

Java类型Hadoop Writable类型
BooleanBooleanWritable
ByteByteWritable
IntIntWritable
FloatFloatWritable
LongLongWritable
DoubleDoubleWritable
StringText
MapMapWritable
ArrayArrayWritable
NullNullWritable

1.7MapReduce 编程规范

用户编写的程序分成三个部分:Mapper、Reducer 和 Driver。

1.Mapper阶段

(1)用户自定义的Mapper要继承自己的父类

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3)Mapper中的业务逻辑写在map()方法中

(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)

(5)map()方法(MapTask进程)对每一个<K,V>调用一次

2.Reducer阶段

(1)用户自定义的Reducer要继承自己的父类

(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(3)Reducer的业务逻辑写在reduce()方法中

(4)ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法

3.Driver阶段

相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象

1.8 WordCount 案例实操

1.8.1本地测试
1.需求

统计指定路径下文本中的每个单词出现的次数

2.需求分析

按照 MapReduce 编程规范,分别编写 Mapper,Reducer,Driver。

3.环境准备

创建Maven工程

<dependencies>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>3.1.3</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.30</version>
 </dependency>
</dependencies>

在项目中填入日志文件,在resource 中编写log4j.properties

log4j.rootLogger=INFO, stdout 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n 
log4j.appender.logfile=org.apache.log4j.FileAppender 
log4j.appender.logfile.File=target/spring.log 
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout 
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
4.编写程序
/**
 * Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
 *     keyin : map 阶段输入的key 的类型 :LongWritable
 *     valuein : map 阶段输入value 的类型 :Text
 *     keyout : map 阶段输出的key 的类型 : Text
 *     valueout : map 阶段输出的 value 的类型 : IntWritable
 */
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
   
   private Text outK = new Text();
   private  IntWritable outV = new IntWritable(1);
   @Override
   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {     
      // 1. 先获取一行
      String line = value.toString();      
      // 2. 切割
      String[] words = line.split(" ");     
      // 3. 循环写出
      for(String word : words){  
         outK.set(word);         
         context.write(outK,outV);
      }
   }
}
/**
 * Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
 *     keyin : reduce 阶段输入的key 的类型: LongWritable
 *     valuein : reduce 阶段输入value 的类型 :Text
 *     keyout : reduce 阶段输出的key 的类型 : Text
 *     valueout : reduce 阶段输出的 value 的类型 : IntWritable
 */
public class WordCountReducer  extends Reducer<Text, IntWritable ,Text,IntWritable> {
   
   private IntWritable outV = new IntWritable();
 
   @Override
   protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {      
      int sum = 0 ;
      // 进行累加
      for(IntWritable value : values){
         sum += value.get();
      }     
      // 填入结果
      outV.set(sum);      
      // 返回结果
      context.write(key,outV);
   }
}
public class WordCountDriver {
   public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
      
      // 1. 获取job
      Configuration configuration = new Configuration();
      Job job = Job.getInstance(configuration);
      
      // 2. 设置jar 包路径
      job.setJarByClass(WordCountDriver.class);
      
      // 3. 关联 mapper 和 reduce
      job.setMapperClass(WordCountMapper.class);
      job.setReducerClass(WordCountReducer.class);
      
      // 4. 设置map 输出 kv 类型
      job.setMapOutputKeyClass(Text.class);
      job.setMapOutputValueClass(IntWritable.class);
      
      // 5. 设置最终输出的 kv 类型
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(IntWritable.class);
      
      // 6. 设置输入路径和输出路径
      FileInputFormat.setInputPaths(job , new Path("D:\\1111\\inputword"));
      FileOutputFormat.setOutputPath(job , new Path("D:\\1111\\outputword2"));
      // 7. 提交job
      boolean result = job.waitForCompletion(true);
      
      System.exit( result ? 0 : 1 );
   }
}

5.本地测试

(1)需要首先配置好 HADOOP_HOME 变量以及 Windows 运行依赖

(2)在 IDEA/Eclipse 上运行程序

1.8.2提交到集群测试
<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
     <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

使用maven 去将项目进行打包

将jar包拖到 xshell 工具栏中就会直接copy 到相应的目录下

启动hadoop 集群

$  myhadoop.sh start

执行wordcout 程序

$  hadoop jar wc.jar  com.simplenton.mapreduce.wordcount.WordCountDriver /input  /output

2.Hadoop序列化

2.1 序列化概述

(1)什么是序列化

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。

反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

(2)为什么要序列化

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。

(3)为什么不用 Java 的序列化

Java 的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop 自己开发了一套序列化机制(Writable)。

(4)Hadoop 序列化特点:

  • 紧凑 :高效使用存储空间。

  • 快速:读写数据的额外开销小。

  • 互操作:支持多语言的交互

2.2 自定义 bean 对象实现序列化接口( Writable )

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在 Hadoop 框架内部传递一个 bean 对象,那么该对象就需要实现序列化接口。具体实现 bean 对象序列化步骤如下 7 步。

(1)必须实现 Writable 接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {
	out.writeLong(upFlow);
	out.writeLong(downFlow);
	out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {
	upFlow = in.readLong();
	downFlow = in.readLong();
	sumFlow = in.readLong();
}

(5)注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写 toString(),可用"\t"分开,方便后续用。

(7)如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为 MapReduce 框中的 Shuffle 过程要求对 key 必须能排序。详见后面排序案例。

@Override
public int compareTo(FlowBean o) {
	// 倒序排列,从大到小
	return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

2.3 序列化实操

/**
 * 1. 实现writable 接口 ,实现方法
 * 2. 对数据进行封装
 * 3. 重写toString 方法
 * 4. 如果bean 要被作为输出的 key 是要被排序的,需要实现排序接口,实现排序方法
 */
public class FlowBean implements Writable {
   
   private long upFlow ;
   private long downFlow ;
   private long sumFlow ;
   
   public FlowBean() {
   }   
   
   public long getUpFlow() {
      return upFlow;
   }
   
   public void setUpFlow(long upFlow) {
      this.upFlow = upFlow;
   }
   
   public long getDownFlow() {
      return downFlow;
   }
   
   public void setDownFlow(long downFlow) {
      this.downFlow = downFlow;
   }
   
   public long getSumFlow() {
      return sumFlow;
   }
   
   public void setSumFlow() {
      this.sumFlow = this.upFlow + this.downFlow ;
   }
   
   @Override
   public void write(DataOutput output) throws IOException {
      
      output.writeLong(upFlow);
      output.writeLong(downFlow);
      output.writeLong(sumFlow);      
   }   
   @Override
   public void readFields(DataInput input) throws IOException {      
      this.upFlow = input.readLong();
      this.downFlow = input.readLong();
      this.sumFlow = input.readLong();      
   } 
   @Override
   public String toString() {
      return  upFlow + "\t" + downFlow + "\t" + sumFlow ;
   }
}
public class FlowMapper extends Mapper<LongWritable , Text , Text , FlowBean> {
   
   private FlowBean outV = new FlowBean();
   private Text outK = new Text();
   @Override
   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      
      // 获取一行
      String line = value.toString();
      
      // 2. 切割
      String[] split = line.split("\t");
      
      // 3. 抓取想要的数据
      // 4. 封装数据
      String phone = split[1];
      
      outK.set(phone);
      
      outV.setUpFlow(Long.parseLong(split[split.length - 3]));
      
      outV.setDownFlow(Long.parseLong(split[split.length - 2]));
      
      outV.setSumFlow();
      
      // 5.输出
      context.write(outK,outV);
   }
}
public class FlowReducer extends Reducer<Text,FlowBean , Text , FlowBean> {
   
   private FlowBean outV = new FlowBean();
   @Override
   protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
      
      // 1. 遍历集合累加值
      long totalUp = 0 ;
      long totalDown = 0 ;
      
      for(FlowBean value : values){
         totalUp += value.getUpFlow();
         totalDown += value.getDownFlow();
      }
      
      // 2. 封装outK ,outV
      outV.setUpFlow(totalUp);
      outV.setDownFlow(totalDown);
      outV.setSumFlow();
      
      context.write(key , outV);
      
   }
}
public class FlowDriver {
   
   public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
      
      // 1. 获取job
      Configuration configuration = new Configuration();
      Job job = Job.getInstance(configuration);
      
      // 2. 设置jar
      job.setJarByClass(FlowDriver.class);
      
      // 3. 关联 mapper 和 reducer
      job.setMapperClass(FlowMapper.class);
      job.setReducerClass(FlowReducer.class);
      
      // 4. 设置 mapper 输出的 key 和 value
      job.setMapOutputKeyClass(Text.class);
      job.setMapOutputValueClass(FlowBean.class);
      
      // 5. 设置最终输出的key 和 value
      job.setOutputKeyClass(Text.class);
      job.setMapOutputValueClass(FlowBean.class);
      
      // 6. 设置数据的输入路径和输出路径
      FileInputFormat.setInputPaths(job,new Path("D:\\1111\\inputflow"));
      FileOutputFormat.setOutputPath(job,new Path("D:\\1111\\outputflow"));
      
      // 7. 提交job
      boolean result = job.waitForCompletion(true);
      
      System.exit( result ? 0 : 1 );
   }
}

3.MapReduce 框架原理

3.1 InputFormat数据输入

3.1.1切片与MapTask并行度决定机制

MapTask 并行度决定机制

数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。

数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行

存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。

在这里插入图片描述

3.1.2 Job 提交流程源码和切片源码详解

一般提交job

boolean result = job.waitForCompletion(true);

进入方法之后

public boolean waitForCompletion(boolean verbose
                                   ) throws IOException, InterruptedException,
                                            ClassNotFoundException {
    if (state == JobState.DEFINE) {// 判断当前状态,符合才会提交
         submit();   // 对其进行提交
    }
    if (verbose) {
      monitorAndPrintJob();  // 监视并打印job 提交信息
    } else {
      // get the completion poll interval from the client.
      int completionPollIntervalMillis = 
        Job.getCompletionPollInterval(cluster.getConf());
      while (!isComplete()) {
        try {
          Thread.sleep(completionPollIntervalMillis);
        } catch (InterruptedException ie) {
        }
      }
    }
    return isSuccessful();  // 设置成功的标志位
 }

查看 submit 方法中的细节

public void submit() throws IOException, InterruptedException, ClassNotFoundException {
    ensureState(Job.JobState.DEFINE); // 对job 状态再次验证,如果不符合就抛出异常
    setUseNewAPI();  // 进行版本兼容,排查,解决
    connect();     // 建立连接
    final JobSubmitter submitter = this.getJobSubmitter(this.cluster.getFileSystem(), this.cluster.getClient());  
    this.status = (JobStatus)this.ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {
        public JobStatus run() throws IOException, InterruptedException, ClassNotFoundException {
            return submitter.submitJobInternal(Job.this, Job.this.cluster);
        }
    }); // 这个JobSunbbiter 这个类用来检查输入输出路径,如果是集群模式会提交jar 包,不是就不会提交jar包,内部有相应的切片细节,
    this.state = Job.JobState.RUNNING; // 改变状态 
    LOG.info("The url to track the job: " + this.getTrackingURL());
}

查看 connect 方法中的细节

private synchronized void connect() throws IOException, InterruptedException, ClassNotFoundException {
    if (this.cluster == null) {
        this.cluster = (Cluster)this.ugi.doAs(new PrivilegedExceptionAction<Cluster>() {
            public Cluster run() throws IOException, InterruptedException, ClassNotFoundException {
                return new Cluster(Job.this.getConfiguration());// 方法这里创建了一给Cluster对象,选择集群还是本地模式
            }
        });
    }
}

对整个流程进行概述

waitForCompletion()
submit();
// 1 建立连接
connect();
// 1)创建提交 Job 的代理
new Cluster(getConfiguration());
// (1)判断是本地运行环境还是 yarn 集群运行环境
initialize(jobTrackAddr, conf); 
// 2 提交 job
submitter.submitJobInternal(Job.this, cluster)
    // 这个是用来检查的
    checkSpecs(job);
    // 获取配置各种默认配置
    Configuration conf = job.getConfiguration();
// 1)创建给集群提交数据的 Stag 路径
Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
// 2)获取 jobid ,并创建 Job 路径
JobID jobId = submitClient.getNewJobID();
// 3)拷贝 jar 包到集群
copyAndConfigureFiles(job, submitJobDir);
rUploader.uploadFiles(job, jobSubmitDir);
// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
maps = writeNewSplits(job, jobSubmitDir);
input.getSplits(job);
// 5)向 Stag 路径写 XML 配置文件
writeConf(conf, submitJobFile);
conf.writeXml(out);
// 6)提交 Job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(),job.getCredentials());

在这里插入图片描述

FileInputFormat 切片源码解析(input.getSplits(job))

(1)程序先找到你数据存储的目录。

(2)开始遍历处理(规划切片)目录下的每一个文件

(3)遍历第一个文件ss.txt

  • (a)获取文件大小fs.sizeOf(ss.txt)

  • (b)计算切片大小 computeSplitSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M

  • (c)默认情况下,切片大小=blocksize

  • (d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M

(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)

  • (e)将切片信息写到一个切片规划文件中

  • (f)整个切片的核心过程在getSplit()方法中完成

  • (g)InputSplit只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等。

(4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。

3.1.3 FileInputFormat 切片机制

1.切片机制

(1)简单地按照文件的内容长度进行切片

(2)切片大小,默认等于Block大小

(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

2.案例分析

(1)输入数据有两个文件:

file1.txt        320M

file2.txt 10M

(2)经过FileInputFormat的切片机制

运算后,形成的切片信息如下:

file1.txt.split1-- 0~128 file1.txt.split2–128~256 file1.txt.split3-- 256~320

file2.txt.split1-- 0~10M

3.分析

(1)源码中计算切片大小的公式

Math.max(minSize, Math.min(maxSize, blockSize));

mapreduce.input.fileinputformat.split.minsize=1 默认值为1

mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue 默认值Long.MAXValue

因此,默认情况下,切片大小=blocksize。

(2)切片大小设置

maxsize(切片最大值):参数如果调得比blockSize小,则会让切片变小,而且就等于配置的这个参数的值。

minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blockSize还大。

(3)获取切片信息 API

// 获取切片的文件名称
String name = inputSplit.getPath().getName();
// 根据文件类型获取切片信息
FileSplit inputSplit = (FileSplit) context.getInputSplit();
3.1.4 TextInputFormat

(1)FileInputFormat 实现类

  • 思考:在运行 MapReduce 程序时,输入的文件格式包括:基于行的日志文件、二进制格式文件、数据库表等。那么,针对不同的数据类型,MapReduce 是如何读取这些数据的呢?

  • FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。

(2) TextInputFormat

​ TextInputFormat 是默认的 FileInputFormat 实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable 类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text 类型。

下面这个例子
Rich learning form
Intelligent learning engine
Learning more convenient
From the real demand for more close to the enterprise
文件被读取之后处理成以下的
(0,Rich learning form)
(20,Intelligent learning engine)
(49,Learning more convenient)
(74,From the real demand for more close to the enterprise)
文件被处理成键值对形式,键是偏移量,值是文件的具体内容
3.1.5 CombineTextInputFormat 切片机制

​ 框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,不管文件多小,都会

是一个单独的切片,都会交给一个 MapTask,这样如果有大量小文件,就会产生大量的

MapTask,处理效率极其低下。

(1)应用场景:

CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到

一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。

(2)虚拟存储切片最大值设置

CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m

注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。

(3)切片机制

生成切片过程包括:虚拟存储过程和切片过程二部分。

setMaxInputSplitSize值为4M
 文件大小                   虚拟存储过程                    
 a.txt  1.7M              1.7 < 4 M 分成一块         
 b.txt  5.1M              5.1 > 4 分成两个2.55     
 c.txt  3.4M              3.4 < 4  分成一块        
 d.txt  6.8M              6.8 > 4  分成两块 3.4
        1.7,2.55,2.55,3.4,3.4,3.4
   切片过程:     
  (a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。 
  (b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
      最终会形成三个文件(1.7+2.55)(2.55+3.4)(3.4+3.4)

虚拟存储过程:将输入目录下所有文件大小,依次和设置的 setMaxInputSplitSize 值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值 2 倍,此时将文件均分成 2 个虚拟存储块(防止出现太小切片)。

3.1.6 CombineTextInputFormat 案例实操

**需求:**对于四个文件进行切片分别处理

实现过程:

在案例wordcount 的案例之上,对于输入的切片方式进行修改就可以实现。

// 设置InputFormatClass 为CombineTextInputFormat
job.setInputFormatClass(CombineTextInputFormat.class);
// 设置每个切片的大小存储的大小  4M  
CombineTextInputFormat.setMaxInputSplitSize(job,20971520);
// 运行之后 切片的个数和推断的一样3 片
// 如果将这个切片的存储变为20 M
// 最后运行的结果就只是一个切片

3.2 MapReduce 工作流程

在这里插入图片描述
在这里插入图片描述

上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第16 步结束,具体 Shuffle 过程详解,如下:

(1)MapTask 收集我们的 map()方法输出的 kv 对,放到内存缓冲区中

(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

(3)多个溢出文件会被合并成大的溢出文件

(4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序

(5)ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据

(6)ReduceTask 会抓取到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce()方法)

注意:

(1)Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区越大,磁盘 io 的次数越少,执行速度就越快。

(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb 默认 100M。

3.3 Shuffle 机制

3.3.1 Shuffle 机制

Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle。

在这里插入图片描述

3.3.2 Partition 分区
  1. 问题引出

将统计的结果按照不同的条件输出到不同的文件中去(分区)

  1. 默认的 Partition 分区 ( 源码 )
public class HashPartitioner<K, V> extends Partitioner<K, V> {
	public int getPartition(K key, V value, int numReduceTasks) {
        return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; 
    } 
}

默认分区是根据key的 hashCode 对 ReduceTasks 个数取模得到的。用户没法控制哪个 key 存储到哪个分区。

  1. 自定义Partitioner步骤

自定义类继承Partitioner,重写getPartition()方法

public class ProvincePartitioner extends Partitioner<Text,FlowBean> {
	@Override
	public int getPartition(Text text, FlowBean flowBean, int numPartitions) {
		
		// 获取手机号 的前三位
		String phone = text.toString();
		String prePhone = phone.substring(0, 3);
		
		// 定义一个分区的变量
		int partition ; 
		
		if("136".equals(prePhone)){
			partition = 0  ;
		}else if("137".equals(prePhone)){
			partition = 1 ;
		}else if("138".equals(prePhone)){
			partition = 2 ;
		}else if("139".equals(prePhone)){
			partition = 3 ;
		}else {
			partition = 4 ;
		}
		
		return partition;
	}
}

在 job 驱动中,设置自定义的 Partition

job.setPartitionerClass(ProvincePartitioner.class);

自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask

job.setNumReduceTasks(5);
  1. 分区总结

(1)如果ReduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;

(2)如果1<ReduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;

(3)如 果ReduceTask的数量=1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个ReduceTask,最终也就只会产生一个结果文件 part-r-00000;

  1. 案例分析

例如:假设自定义分区数为5,则

(1)job.setNumReduceTasks(1); // 按照默认输出,将无视分区,输出在一个文件中

(2)job.setNumReduceTasks(2); // 报错,有些分区没被处理

(3)job.setNumReduceTasks(6); // 不会报错但会造成浪费,大于5 的生成空文件

3.3.3 WritableComparable 排序

排序是MapReduce框架中最重要的操作之一。

MapTask和ReduceTask均会对数据按 照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。

默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。

  • 对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数 据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。

  • 对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

(1)部分排序

MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。

(2)全排序

最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。

(3)辅助排序:(GroupingComparator分组)

在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。

(4)二次排序

在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

3.3.4 排序实操

首先被排序的 key 必须实现 writableComparable 接口

对之前的进行修改 bean 实现writableComparable 接口

public class FlowBean implements WritableComparable<FlowBean> {
	@Override
	public int compareTo(FlowBean o) {
		// 按照总流量比较
		if( this.sumFlow > o.sumFlow){
			return -1 ;
		}else if(this.sumFlow < o.sumFlow){
			return 1 ;
		}else {
			if(this.upFlow > o.upFlow){
				return -1 ;
			}else if (this.upFlow < o.upFlow){
				return 1 ;
			}else {
				return 0 ;
			}
		}	
	}
}

对mapper 进行修改

public class FlowMapper extends Mapper<LongWritable , Text , FlowBean, Text> {
    private FlowBean outK = new FlowBean();
	private Text outV = new Text();
	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		// 统计流量将上行流量和下行流量保留
		String string = value.toString();	
		String[] split = string.split("\t");
		outV.set(split[0]);
		outK.setUpFlow(Long.parseLong(split[1]));
		outK.setDownFlow(Long.parseLong(split[2]));
		outK.setSumFlow();
		context.write(outK,outV);
	}
}

对 Reduce 进行修改

public class FlowReducer extends Reducer<FlowBean, Text, Text , FlowBean> {  
   @Override
   protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {   
      for(Text value : values){
         context.write(value , key);
      }
   }
}

对 driver 进行修改

// 4. 设置 mapper 输出的 key 和 value
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(Text.class);
3.3.5 Combiner 合并

(1)Combiner是MR程序中Mapper和Reducer之外的一种组件。

(2)Combiner组件的父类就是Reducer。

(3)Combiner和Reducer的区别在于运行的位置

  • Combiner是在每一个MapTask所在的节点运行;

  • Reducer是接收全局所有Mapper的输出结果;

(4)Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减小网络传输量。

(5)Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出 kv 应该跟 Reducer 的输入 kv 类型要对应起来。

3.3.6 Combiner 实操

在 word count 案例上进行测试,编写 WordCountCombiner 类,继承 Reduce

public class WordCountCombiner extends Reducer<Text, IntWritable, Text , IntWritable> {
	
	private IntWritable outV = new IntWritable();
	@Override
	protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
		
		int sum = 0 ;
		for(IntWritable value : values){
			sum += value.get() ;
		}
		
		outV.set(sum);
		
		context.write(key,outV);
	}
}

在 Driver 中添加 combiner

job.setCombinerClass(WordCountCombiner.class);

观察日志发现在,运行Reduce 之前进行了一次合并。而且 Combiner 和 Reducer 类中所写的相同也实现了同样的接口,所以在使用 Combiner 是也可以不用编写,直接使用 Reducer 类

job.setCombinerClass(WordCountReducer.class);

注意:

  • 求平均值,这种案例,局部求平均值,会影响总共的平均值,所以使用 Combiner 对输出的结果有影响时,就不能使用 Combiner
  • 当求和这种案例 ,局部求和,最后全局求和,不会影响最终结果,就可以使用 Combiner 对 Reducer 操作前进行一次 Combiner 。

3.4 OutputFormat 数据输出

3.4.1 OutputFormat 接口实现类

OutputFormat是MapReduce输出的基类,所有实现MapReduce输出都实现了 OutputFormat 接口。下面我们介绍几种常见的 OutputFormat 实现类。

默认的 输出格式是 TextOutputFormat ,而如果需要输出到别的存储框架中的话就需要 自定义 OutputFormat

  • 自定义一个类继承 FileOutputFormat
  • 改写 RecordWriter ,具体改写输出数据的方法 write()。
3.4.2 自定义 OutputFormat 案例实操

需求: 过滤输入的log日志,包含atguigu的网站输出到e:/atguigu.log,不包含atguigu的网站输出到e:/other.log

编写LogMapper 类

public class LogMapper extends Mapper<LongWritable , Text , Text , NullWritable> {
   
   @Override
   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      context.write(value,NullWritable.get());
   }
}

再编写 LogReducer 类

public class LogReducer extends Reducer<Text, NullWritable , Text , NullWritable> {
   @Override
   protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
      for(NullWritable value : values){
         context.write(key,value);
      }
   }
}

再编写 LogOutputFormat 类,继承 FileOutputFormat

public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {
   
   @Override
   public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
      // 创建一个自定义的RecordWriter 返回
      LogRecordWriter logRecordWriter = new LogRecordWriter(job);
      
      return logRecordWriter;
   }
}

其中抽象方法需要返回一个 RecordWriter 类 ,我们需要对这个类进行实现,这个类中是这个转换过程中具体核心方法的实现。

public class LogRecordWriter extends RecordWriter<Text, NullWritable> {
   
   private FSDataOutputStream atguiguOutput;
   private FSDataOutputStream otherOutput;
   
   public LogRecordWriter(TaskAttemptContext job) {   
      try {
         // 获取文件系统对象
         FileSystem fs = FileSystem.get(job.getConfiguration());
         // 用文件系统对象创建两个输出流对应不同的目录
         atguiguOutput = fs.create(new Path("D:\\1111\\logoutput\\atguigu.log"));
         otherOutput = fs.create(new Path("D:\\1111\\logoutput\\other.log"));  
      } catch (IOException e) {
         e.printStackTrace();
      }
   }
   @Override
   public void write(Text key, NullWritable value) throws IOException, InterruptedException {
      String log = key.toString();
      // 根据一行的log 数据判断是否包含 atguigu ,判断两条输出流输出的内容
      if(log.contains("atguigu")) {
         atguiguOutput.writeBytes(log + "\n");
      }else {
         otherOutput.writeBytes(log + "\n");
      }
   } 
   @Override
   public void close(TaskAttemptContext context) throws IOException, InterruptedException {   
      // 关流
      IOUtils.closeStream(atguiguOutput);
      IOUtils.closeStream(otherOutput);
   }
}

编写Driver 类,将输出转换 OutputFormat 类进行设置

// 设置自定义的 outputformat
job.setOutputFormatClass(LogOutputFormat.class);

3.5 MapReduce 内核源码解析

3.5.1 MapTask 工作机制

在这里插入图片描述

(1)Read 阶段:MapTask 通过 InputFormat 获得的 RecordReader,从输入 InputSplit 中解析出一个个 key/value。

(2)Map 阶段:该节点主要是将解析出的 key/value 交给用户编写 map()函数处理,并产生一系列新的 key/value。

(3)Collect 收集阶段:在用户编写 map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的 key/value 分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill 阶段:即“溢写”,当环形缓冲区满后,MapReduce 会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:

步骤 1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition 进行排序,然后按照 key 进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照 key 有序。

步骤 2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件 output/spillN.out(N 表示当前溢写次数)中。如果用户设置了 Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

步骤 3:将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过 1MB,则将内存索引写到文件output/spillN.out.index 中。

(5)Merge 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

​ 当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件output/file.out 中,同时生成相应的索引文件 output/file.out.index。

​ 在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并 mapreduce.task.io.sort.factor(默认 10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。

让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

3.5.2 ReduceTask 工作机制

在这里插入图片描述
在这里插入图片描述

(1)Copy 阶段:ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。

(2)Sort 阶段:在远程拷贝数据的同时,ReduceTask 启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照 MapReduce 语义,用户编写 reduce()函数输入数据是按 key 进行聚集的一组数据。为了将 key 相同的数据聚在一起,Hadoop 采用了基于排序的策略。由于各个 MapTask 已经实现对自己的处理结果进行了局部排序,因此,ReduceTask 只需对所有数据进行一次归并排序即可。

(3)Reduce 阶段:reduce()函数将计算结果写到 HDFS 上。

3.5.3 ReduceTask 并行度决定机制

MapTask 并行度由切片个数决定,切片个数由输入文件和切片规则决定。

  1. 设置 ReduceTask 并行度(个数)

    ReduceTask 的并行度同样影响整个 Job 的执行并发度和执行效率,但与 MapTask 的并

    发数由切片数决定不同,ReduceTask 数量的决定是可以直接手动设置:

// 默认值是 1,手动设置为 4 ,等于0 直接没有 reduce 阶段
job.setNumReduceTasks(4);
  1. 注意事项

(1)ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map个数一致。

(2)ReduceTask默认值就是1,所以输出文件个数为一个。

(3)如果数据分布不均匀,就有可能在Reduce阶段产生数据倾斜

(4)ReduceTask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个ReduceTask。

(5)具体多少个ReduceTask,需要根据集群性能而定。

(6)如果分区数不是1,但是ReduceTask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。

3.6 Join 应用

3.6.1 Reduce Join
  • Map 端的主要工作:为来自不同表或文件的 key/value 对,打标签以区别不同来源的记录。然后用连接字段作为 key,其余部分和新加的标志作为 value,最后进行输出。

  • Reduce 端的主要工作:在 Reduce 端以连接字段作为 key 的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在 Map 阶段已经打标志)分开,最后进行合并就 ok 了。

3.6.2 Reduce Join 实操

需求:将两个表进行合并,一个订单表order ,有id , pid 外键, amount 数量 ,另一个表 product 产品边,有 pid , pname 字段,对两个表进行合并,把pid 替换成 pname ;

实现:

编写一个 Table 类,对两个表中的字段都有包含,

public class TableBean implements Writable {
   
   private String id ;
   private String pid ;
   private int amount ;
   private String pname;
   private String flag ;
   
   public String getId() {
      return id;
   }
   
   public void setId(String id) {
      this.id = id;
   }
   
   public String getPid() {
      return pid;
   }
   
   public void setPid(String pid) {
      this.pid = pid;
   }
   
   
   public int getAmount() {
      return amount;
   }
   
   public void setAmount(int amount) {
      this.amount = amount;
   }
   
   public String getPname() {
      return pname;
   }
   
   public void setPname(String pname) {
      this.pname = pname;
   }
   
   public String getFlag() {
      return flag;
   }
   
   public void setFlag(String flag) {
      this.flag = flag;
   }
   
   @Override
   public String toString() {
      return id + "\t" + pname + "\t" + amount ;
   }
   
   @Override
   public void write(DataOutput out) throws IOException {
      out.writeUTF(id);
      out.writeUTF(pid);
      out.writeInt(amount);
      out.writeUTF(pname);
      out.writeUTF(flag);
   }
   
   @Override
   public void readFields(DataInput in) throws IOException {
      this.id = in.readUTF() ;
      this.pid = in.readUTF();
      this.amount = in.readInt();
      this.pname = in.readUTF();
      this.flag = in.readUTF();
   }
}

编写 TableMapper 类

public class TableMapper extends Mapper<LongWritable , Text , Text , TableBean> {
   
   private String filename ;
   private Text outK = new Text();
   private TableBean outV = new TableBean();
   
   @Override
   protected void setup(Context context) throws IOException, InterruptedException {
      // 获取文件对应的名称
      InputSplit split = context.getInputSplit();
      FileSplit fileSplit  = (FileSplit)split;
      filename = fileSplit.getPath().getName();
   }
   
   @Override
   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      
      // 获取一行内容
      String line = value.toString();
      
      // 判断是哪个文件
      if(filename.contains("order")){
         String[] strings = line.split("\t");
         
         // 封装输出
         outK.set(strings[1]);
         
         outV.setId(strings[0]);
         outV.setPid(strings[1]);
         outV.setAmount(Integer.parseInt(strings[2]));
         outV.setPname("");
         outV.setFlag("order");
      }else {
         String[] split = line.split("\t");
         
         // 封装输出
         outK.set(split[0]);
         
         outV.setPid(split[0]);
         outV.setPname(split[1]);
         outV.setAmount(0);
         outV.setId("");
         outV.setFlag("pd");
      }
      
      context.write(outK,outV);
   }
}

编写 TableReducer 类

public class TableReducer extends Reducer<Text , TableBean ,TableBean , NullWritable> {
  
   @Override
   protected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException {
      
      ArrayList<TableBean> list = new ArrayList<>();
      TableBean pdBean = new TableBean();
      
      for( TableBean value : values){
         // tableBean 来自order表的数据会有多个,每次新创建对象,而 pd 表中只会有一个
         // 在全局声明就可以,而且pd 表中的数据只是为了提供名称,不用写入集合
         if("order".equals(value.getFlag())){         
            // 创建一个临时的 TableBean 对象来存储接收value
            TableBean temptableBean = new TableBean();
            
            try {
               BeanUtils.copyProperties(temptableBean , value);
            } catch (IllegalAccessException e) {
               e.printStackTrace();
            } catch (InvocationTargetException e) {
               e.printStackTrace();
            }        
            // 将临时表tempTableBean 中的对象添加拿到集合中去
            list.add(temptableBean);       
         }else {      
            try {
               BeanUtils.copyProperties(pdBean , value);
            } catch (IllegalAccessException e) {
               e.printStackTrace();
            } catch (InvocationTargetException e) {
               e.printStackTrace();
            }
         }
      }  
      for( TableBean bean : list){
         bean.setPname(pdBean.getPname());
         
         context.write(bean , NullWritable.get());
      }
   }
}

编写 TableDriver 类

public class TableDriver {
   
   public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
      
      Job job = Job.getInstance(new Configuration());
      
      job.setJarByClass(TableDriver.class);
      job.setMapperClass(TableMapper.class);
      job.setReducerClass(TableReducer.class);
      
      job.setMapOutputKeyClass(Text.class);
      job.setMapOutputValueClass(TableBean.class);
      
      job.setOutputKeyClass(TableBean.class);
      job.setOutputValueClass(NullWritable.class);
      
      FileInputFormat.setInputPaths(job,new Path("D:\\1111\\inputtable"));
      FileOutputFormat.setOutputPath(job,new Path("D:\\1111\\tableoutput"));
      
      boolean b = job.waitForCompletion(true);
      System.exit( b ? 0 : 1 );
   }
}

缺点:这种方式中,合并的操作是在 Reduce 阶段完成,Reduce 端的处理压力太大,Map节点的运算负载则很低,资源利用率不高,且在 Reduce 阶段极易产生数据倾斜。

3.6.3 Map Join

使用场景:Map Join 适用于一张表十分小、一张表很大的场景。

优点: 在 Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数据的压力,尽可能的减少数据倾斜。

具体办法:采用 DistributedCache

  1. 在 Mapper 的setup 阶段,将文件读取到缓存集合中
  2. 在 Driver 驱动类中加载缓存

编写 mapper 类

public class MapJoinMapper extends Mapper<LongWritable, Text , Text , NullWritable> {
   
   private Map<String ,String> map = new HashMap<>();
   private Text outK = new Text();
   
   @Override
   protected void setup(Context context) throws IOException, InterruptedException {
      
      // 通过缓存文件得到小标数据 pd.txt
      URI[] cacheFiles = context.getCacheFiles();
      Path path = new Path(cacheFiles[0]);
      
      // 获取系统文件得到小表数据pd.txt
      FileSystem fs = FileSystem.get(context.getConfiguration());
      FSDataInputStream open = fs.open(path);
      
      // 通过包装流转换为reader ,方便读取
      BufferedReader reader = new BufferedReader(new InputStreamReader(open, "UTF-8"));
      
      // 逐行读取,按行处理
      String line ;
      while (StringUtils.isNotEmpty(line = reader.readLine())){
         
         String[] split = line.split("\t");
         map.put(split[0],split[1]);
         
      }
      IOUtils.closeStream(reader);
   }
   
   @Override
   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      
      // 读取大表数据的每一行
      String[] fields = value.toString().split("\t");
      
      // 通过大表的每行数据pid ,去map中去找值替换
      String pname = map.get(fields[1]);
      
      // 把大表的数替换成pname
      outK.set(fields[0]+ "\t" + pname + "\t" + fields[2]) ;
      
      // 写出数据
      context.write(outK,NullWritable.get());
   }
}

编写 Driver

public class TableDriver {
   
   public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
      
      Job job = Job.getInstance(new Configuration());
      
      job.setJarByClass(TableDriver.class);
      job.setMapperClass(MapJoinMapper.class);
      //job.setReducerClass(TableReducer.class);
      
      job.setMapOutputKeyClass(Text.class);
      job.setMapOutputValueClass(NullWritable.class);
      
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(NullWritable.class);
      
      // 加载缓存数据
      job.addCacheFile(new URI("file:///D:/1111/inputtable/pd.txt"));
      // Map 端 Join 的逻辑不需要Reduce阶段
      job.setNumReduceTasks(0);
      
      FileInputFormat.setInputPaths(job,new Path("D:\\1111\\inputtable"));
      FileOutputFormat.setOutputPath(job,new Path("D:\\1111\\tableoutput1"));
      
      boolean b = job.waitForCompletion(true);
      System.exit( b ? 0 : 1 );
   }
}

3.7 数据清洗(ETL)

  • “ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL 一词较常用在数据仓库,但其对象并不限于数据仓库
  • 在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。

需求: 除去日志中字段数小于等于 11 的日志

编写 Mapper 类

public class WebLogMapper extends Mapper<LongWritable , Text , Text , NullWritable> {
   
   @Override
   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      // 获取一行数据
      String line = value.toString();    
      // 解析日志
      boolean result = parseLog(line,context);   
      // 日志不合法就退出
      if( !result){
         return;
      }
      // 合法就写出
      context.write(value,NullWritable.get());    
   }   
   private boolean parseLog(String line, Context context) {   
      String[] split = line.split(" ");      
      if(split.length > 11){
         return true;
      }else {
         return false;
      }      
   }
}

编写 Driver 类

public class WebLogDriver {
   
   public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {    
      args = new String[]{
         "D:/1111/inputlog","D:/1111/outputlog111"
      };
      // 获取job 信息
      Job job = Job.getInstance(new Configuration());
      // 加载jar
      job.setJarByClass(WebLogDriver.class);
      // 设置mapper 的类
      job.setMapperClass(WebLogMapper.class);      
      // 设置最终输出的类型
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(NullWritable.class);      
      // 设置reduceTask 的个数为0 ,直接避免 reduce 阶段
      job.setNumReduceTasks(0);      
      // 设置输出和输入路径
      FileInputFormat.setInputPaths(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job , new Path(args[1]));     
      // 提交
      boolean b = job.waitForCompletion(true);
      System.exit( b ?  0 : 1);
   }
}

3.8 开发总结

  1. 输入数据接口:InputFormat

    (1)默认使用的实现类是:TextInputFormat

    (2)TextInputFormat 的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为key,行内容作为 value 返回。

    (3)CombineTextInputFormat 可以把多个小文件合并成一个切片处理,提高处理效率。

  2. 逻辑处理接口:Mapper

    ​ 用户根据业务需求实现其中三个方法:map() setup() cleanup ()

  3. Partitioner 分区

    (1)有默认实现 HashPartitioner,逻辑是根据 key 的哈希值和 numReduces 来返回一个分区号;key.hashCode()&Integer.MAXVALUE % numReduces

    (2)如果业务上有特别的需求,可以自定义分区。

  4. Comparable 排序

    (1)当我们用自定义的对象作为 key 来输出时,就必须要实现 WritableComparable 接口,重写其中的 compareTo()方法。

    (2)部分排序:对最终输出的每一个文件进行内部排序。

    (3)全排序:对所有数据进行排序,通常只有一个 Reduce。

    (4)二次排序:排序的条件有两个。

  5. Combiner 合并

    Combiner 合并可以提高程序执行效率,减少 IO 传输。但是使用时必须不能影响原有的业务处理结果。

  6. 逻辑处理接口:Reducer

    用户根据业务需求实现其中三个方法:reduce() setup() cleanup ()

  7. 输出数据接口:OutputFormat

    (1)默认实现类是 TextOutputFormat,功能逻辑是:将每一个 KV 对,向目标文本文件输出一行。

    (2)用户还可以自定义 OutputFormat。

4. Hadoop压缩

4.1 概述

  1. 压缩的好处和坏处:

    压缩的优点:以减少磁盘 IO、减少磁盘存储空间。

    压缩的缺点:增加 CPU 开销。

  2. 压缩原则:

    (1)运算密集型的 Job,少用压缩

    (2)IO 密集型的 Job,多用压缩

4.2 压缩方式选择

压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。

4.2.1 Gzip 压缩

优点:压缩率比较高;

缺点:不支持 Split;压缩/解压速度一般;

4.2.2 Bzip2 压缩

优点:压缩率高;支持 Split;

缺点:压缩/解压速度慢。

4.2.3 Lzo 压缩

优点:压缩/解压速度比较快;支持 Split;

缺点:压缩率一般;想支持切片需要额外创建索引。

4.2.4 Snappy 压缩

优点:压缩和解压缩速度快;

缺点:不支持 Split;压缩率一般;

4.2.5 压缩位置选择

压缩可以在 MapReduce 作用的任意阶段启用。

在这里插入图片描述

4.3 压缩参数配置

(1)为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器

压缩格式对应的编码/解码器
DEFLATEorg.apache.hadoop.io.compress.DefaultCodec
gziporg.apache.hadoop.io.compress.GzipCodec
bzip2org.apache.hadoop.io.compress.BZip2Codec
LZOcom.hadoop.compression.lzo.LzopCodec
Snappyorg.apache.hadoop.io.compress.SnappyCodec

(2)要在 Hadoop 中启用压缩,可以配置如下参数

参数默认值阶段建议
io.compression.codecs (在 core-site.xml 中配置)无,这个需要在命令行输入hadoop checknative 查看输入压缩Hadoop 使用文件扩展名判断是否支持某种编解码器
mapreduce.map.output.compress(在 mapred-site.xml 中配置)falsemapper 输出这个参数设为 true 启用压缩
mapreduce.map.output.compress.codec(在 mapred-site.xml 中配置)org.apache.hadoop.io.compress.DefaultCodecmapper输出企业多使用 LZO 或 Snappy 编解码器在此阶段压缩数据
mapreduce.output.fileoutputformat.compress(在mapred-site.xml 中配置)falsereducer 输出这个参数设为 true 启用压缩
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml 中配置)org.apache.hadoop.io.compress.DefaultCodecreducer 输出使用标准工具或者编解码器,如 gzip 和解码器,如 gzip 和
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值