构建SHAP模型踩雷过程

文章讲述了作者在使用XGBoost构建回归模型并借助SHAP解释变量重要性时遇到的问题,包括大数据量导致的长时间运行和GPU引入后的ImportError。作者通过改用GPUTree和GPU计算、调整模型复杂度以及考虑租赁GPU以解决内存占用问题的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  由于论文需要判断各个因子对因变量的重要性,因此利用XGBoost构建回归模型,加入SHAP解释各因子对因变量的重要性。在构建过程中遇见以下几个问题:
(1)输入数据过大,运行时间很长。
由于我的数据是栅格数据,读取以后约有500万条数据,我破烂的cpu跑了三天三夜也没出结果。
解决方法:改用GPUTree,调用GPU来构建SHAP模型,速度飞快!!
(2)改用GPU后,出现了一个重大问题,报错:

ImportError: cannot import name '_cext_gpu'


参照知乎大佬方式解决了,链接在这。其中复制仓库过程很慢,因此改为直接从Github下载完整的仓库压缩文件即可,注意登入Github账号才可完整下载
(3)现在GPUTree可以正确运行了,但是迎来了最重要的问题。
在XGBoost训练完毕后,计算SHAP值时会将计算机内存占满,随后才能调用GPU内存,具体原因我也不太清楚,有可能是需要将数据转换至GPU内存运行时占用太多计算机内存了。因此我的anaconda内核会一直挂掉
解决方案有两种 :

1.租用GPU进行计算。我用的是Autodl,租个3080ti只要1.08每小时,还算便宜花不了几个钱。
2.降低模型复杂度!这点很奇怪,将XGB的复杂度适当降低以后就即可,并没有修改数据集的大小,但是会导致XGB拟合效果不理想!

所以最优选仍然是租用一个GPU,但是又要面临重新配置环境的困难,有可能需要重复问题(1)(2)了。

### SHAP模型在MATLAB中的实现与应用 #### 1. 安装必要的工具箱和支持包 为了在MATLAB中使用SHAPShapley Additive Explanations),需要安装Statistics and Machine Learning Toolbox以及Deep Learning Toolbox。这些工具箱提供了构建和训练机器学习模型的功能,同时也支持部分解释性分析的方法。 对于更高级别的功能,比如直接调用Python库来辅助完成复杂的任务,可以考虑通过MATLAB Engine API for Python接口引入外部资源[^2]。 #### 2. 使用MATLAB内置函数初步探索数据集 利用`fitctree`, `fitcensemble` 或者其他分类器/回归器创建基础模型之后,可以通过诸如`predict`这样的命令来进行预测操作。此时虽然还没有涉及到具体的解释机制,但是理解输入输出之间的关系是后续工作的前提条件。 ```matlab % 假设X为特征矩阵,Y为目标变量向量 Mdl = fitctree(X, Y); % 构建决策树作为示例模型 Ypred = predict(Mdl,X); ``` #### 3. 应用SHAP值计算并可视化结果 目前MATLAB官方并未提供专门针对SHAP的内置函数,因此有两种主要途径: - **方案A**: 利用MATLAB自带的支持向量机(SVM)、随机森林(Random Forests)等算法配合`lime`或`pdp`(Partial Dependence Plot)等功能间接获得类似的解释效果; - **方案B**: 更推荐的方式是从Python环境中借用shap库的力量,在MATLAB内部运行Python脚本以获取所需的SHAP值,并将其转换回MATLAB结构以便进一步处理和展示。 下面是一个简单的例子说明如何借助Python shap库执行此过程: ```matlab pyversion('path_to_your_python.exe'); % 设置使用的Python版本路径 addpath(genpath(fullfile(matlabroot,'extern','examples','eng_mat'))); model_path = 'your_model_file.mat'; % 存储好的ML/DL模型文件位置 data_path = 'your_dataset.csv'; % 数据源CSV文件的位置 % 加载预训练模型及测试数据... load(model_path); T = readtable(data_path); % 调用Python代码片段进行SHAP值计算 eval(['!python -c "import sys; import pandas as pd; from sklearn.externals import joblib;' 'from shap import Explainer, summary_plot; model=joblib.load(\'' ... matlab.internal.engine.evalString('fullfile(pwd,model_path)'),'\');' 'explainer = Explainer(model); shap_values = explainer(pd.read_csv(\'' ... matlab.internal.engine.evalString('fullfile(pwd,data_path)'), '\')); ' 'summary_plot(shap_values, pd.read_csv(\'' ... matlab.internal.engine.evalString('fullfile(pwd,data_path)'), '\')).savefig(\'shap_summary.png\')"']); imshow(imread('shap_summary.png')); title('Feature Importance via SHAP Values'); ``` 这段代码展示了怎样跨平台调用Python环境下的shap库来生成特征重要性的总结图,并最终返回给MATLAB显示出来。需要注意的是实际部署时应确保所有依赖项都已正确配置好。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值