目录
基本原理
并查集:将n个对象划分为若干个不相交集合,每个集合用其中某个元素代表整个集合。
经典例题有 连通子图、最小生成树Kruskal算法、最近公共祖先(LCA),之后再补
基本操作 (初始化、合并、查找)
int f[100010]; //定义祖先数组,f[i]记录第i个数的父节点
void init(){ //初始化,每次使用都要初始化
for(int i=0;i<100005;i++){
f[i]=i;
}
}
int find1(int i){ //非递归查找,返回i所在的集合的根节点
while(f[i]!=i) //一直向上查找,直到父节点是它本身
i=f[i];
return i; //搜索路径可能很长,可以优化(路径压缩)
}
int find2(int i){ //递归查找,容易爆栈,一般非递归实现
if(f[i]==i)return i;
return find2(f[i]); //返回父节点的根节点
}
void merge(int x,int y){ //合并两个集合
x=find1(x);
y=find1(y);
if(x==y)return; //本身就在一个集合
f[x]=f[y]; //合并,实质是 使x的父节点为y
} //树的高度为O(n),容易退化成链表,所以需要优化(按秩合并)
两个优化
1.按秩合并
为了避免退化,我们总是将高度小的树合并到高度大的数
int f[100010];
int h[100010]; //另开数组存放所在树的高度
void init(){ //初始化
for(int i=0;i<100005;i++){
f[i]=i;
h[i]=0;
}
}
void merge(int x,int y){ //按秩合并
x=find1(x);
y=find1(y);
if(h[x]==h[y]){ //两个树一样高,高度++
f[x]=f[y];
h[y]++;
}
else{
if(h[x]<h[y])f[x]=y; //将矮的树合并到高的树上,高度不变
else f[y]=x;
}
}
2.路径压缩
由于搜索路径可能很长,我们在返回时把每个i的父节点也顺便改为根节点,下次查询的复杂度就降为了O(1),由于合并时也用到了查询,路径压缩也优化了合并。
int f[100010];
int find1(int i){ //递归实现查询优化,可能爆栈
if(f[i]!=i)f[i]=find1(f[i]); //修改f[i]为根节点,压缩路径
return f[i];
}
int find2(int i){ //非递归实现查询优化,不会爆栈
int r=i;
while(r!=f[r])r=f[r]; //先利用r找出根节点
while(i!=r){
int tmp=f[i]; //临时变量储存i的父节点
f[i]=r; //更新路径上每一点的父节点为根节点
i=tmp; //更新i为i的父节点
}
return r;
}
一些例题
1.Secret Passwords
2.亲戚
https://www.luogu.com.cn/problem/P1551
题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:x 和 y 是亲戚,y 和 z 是亲戚,那么 x 和 z 也是亲戚。如果 x,y 是亲戚,那么 x 的亲戚都是 y 的亲戚,y 的亲戚也都是 x 的亲戚。
输入格式
第一行:三个整数 n,m,p,(1≤n,m,p≤5000),分别表示有 n 个人,m 个亲戚关系,询问 p 对亲戚关系。
以下 m 行:每行两个数 Mi,Mj,1≤Mi, Mj≤N,表示Mi 和 Mj 具有亲戚关系。
接下来 p 行:每行两个数 Pi,Pj,询问 Pi 和 Pj 是否具有亲戚关系。
输出格式
p 行,每行一个 Yes
或 No
。表示第 i 个询问的答案为“具有”或“不具有”亲戚关系。
输入
6 5 3 1 2 1 5 3 4 5 2 1 3 1 4 2 3 5 6
输出
Yes Yes No
并查集裸题,直接套板子,练练手
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int f[5005];
int h[5005];
void init(){ //初始化
for(int i=0;i<5004;i++){
f[i]=i;
h[i]=0;
}
}
int Find(int i){ //查询
int r=i;
while(r!=f[r])r=f[r];
while(i!=f[i]){
int t=f[i];
f[i]=r;
i=t;
}
return r;
}
void Merge(int x,int y){ //合并
x=Find(x);
y=Find(y);
if(h[x]==h[y]){
h[y]++;
f[x]=y;
}
else{
if(h[x]<h[y])f[x]=y;
else f[y]=x;
}
}
int main(){
init();
int n,m,p;
cin>>n>>m>>p;
while(m--){
int a,b;
cin>>a>>b;
Merge(a,b); //合并
}
while(p--){
int a,b;
cin>>a>>b; //查询
if(Find(a)==Find(b))cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}