并查集(查找合并优化及例题)

目录

基本原理

基本操作  (初始化、合并、查找)

两个优化

1.按秩合并

2.路径压缩

一些例题

1.Secret Passwords

2.亲戚 

题目背景

题目描述

输入格式

输出格式

输入 

输出 


 

基本原理

并查集:将n个对象划分为若干个不相交集合,每个集合用其中某个元素代表整个集合。

经典例题有 连通子图、最小生成树Kruskal算法、最近公共祖先(LCA),之后再补

基本操作  (初始化、合并、查找)


int f[100010];      //定义祖先数组,f[i]记录第i个数的父节点

void init(){        //初始化,每次使用都要初始化
    for(int i=0;i<100005;i++){
        f[i]=i;
    }
}

int find1(int i){   //非递归查找,返回i所在的集合的根节点
    while(f[i]!=i)     //一直向上查找,直到父节点是它本身
        i=f[i];     
    return i;        //搜索路径可能很长,可以优化(路径压缩)
}

int find2(int i){       //递归查找,容易爆栈,一般非递归实现
    if(f[i]==i)return i;
    return find2(f[i]);     //返回父节点的根节点
}

void merge(int x,int y){    //合并两个集合
    x=find1(x);
    y=find1(y);
    if(x==y)return;     //本身就在一个集合
    f[x]=f[y];          //合并,实质是 使x的父节点为y
}       //树的高度为O(n),容易退化成链表,所以需要优化(按秩合并)

两个优化

1.按秩合并

为了避免退化,我们总是将高度小的树合并到高度大的数

int f[100010];
int h[100010];  //另开数组存放所在树的高度

void init(){    //初始化
    for(int i=0;i<100005;i++){
        f[i]=i;
        h[i]=0;
    }
}

void merge(int x,int y){    //按秩合并
    x=find1(x);
    y=find1(y);
    if(h[x]==h[y]){     //两个树一样高,高度++
        f[x]=f[y];
        h[y]++;
    }
    else{
        if(h[x]<h[y])f[x]=y;    //将矮的树合并到高的树上,高度不变
        else f[y]=x;
    }
}

2.路径压缩

由于搜索路径可能很长,我们在返回时把每个i的父节点也顺便改为根节点,下次查询的复杂度就降为了O(1),由于合并时也用到了查询,路径压缩也优化了合并。

int f[100010];

int find1(int i){       //递归实现查询优化,可能爆栈
    if(f[i]!=i)f[i]=find1(f[i]);    //修改f[i]为根节点,压缩路径
    return f[i];
}

int find2(int i){       //非递归实现查询优化,不会爆栈
    int r=i;
    while(r!=f[r])r=f[r];   //先利用r找出根节点
    while(i!=r){
        int tmp=f[i];   //临时变量储存i的父节点
        f[i]=r;         //更新路径上每一点的父节点为根节点
        i=tmp;          //更新i为i的父节点
    }
    return r;
}

一些例题

1.Secret Passwords

ACM训练第二周

2.亲戚 

https://www.luogu.com.cn/problem/P1551

题目背景

若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。

题目描述

规定:x 和 y 是亲戚,y 和 z 是亲戚,那么 x 和 z 也是亲戚。如果 x,y 是亲戚,那么 x 的亲戚都是 y 的亲戚,y 的亲戚也都是 x 的亲戚。

输入格式

第一行:三个整数 n,m,p,(1≤n,m,p≤5000),分别表示有 n 个人,m 个亲戚关系,询问 p 对亲戚关系。

以下 m 行:每行两个数 Mi​,Mj​,1≤Mi​, Mj​≤N,表示Mi​ 和 Mj​ 具有亲戚关系。

接下来 p 行:每行两个数 Pi​,Pj​,询问 Pi​ 和 Pj​ 是否具有亲戚关系。

输出格式

p 行,每行一个 Yes 或 No。表示第 i 个询问的答案为“具有”或“不具有”亲戚关系。

输入 

6 5 3
1 2
1 5
3 4
5 2
1 3
1 4
2 3
5 6

输出 

Yes
Yes
No

 并查集裸题,直接套板子,练练手

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int f[5005];
int h[5005];    

void init(){        //初始化
    for(int i=0;i<5004;i++){
        f[i]=i;
        h[i]=0;
    }
}

int Find(int i){        //查询
    int r=i;
    while(r!=f[r])r=f[r];
    while(i!=f[i]){
        int t=f[i];
        f[i]=r;
        i=t;
    }
    return r;
}

void Merge(int x,int y){    //合并
    x=Find(x);
    y=Find(y);
    if(h[x]==h[y]){
        h[y]++;
        f[x]=y;
    }
    else{
        if(h[x]<h[y])f[x]=y;
        else f[y]=x;
    }
}

int main(){
    init();
    int n,m,p;
    cin>>n>>m>>p;
    while(m--){
        int a,b;
        cin>>a>>b;
        Merge(a,b);         //合并
    }
    while(p--){
        int a,b;
        cin>>a>>b;         //查询
        if(Find(a)==Find(b))cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Auroraaaaaaaaaaaaa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值