2021-06-05

整数倒数循环节的性质探讨

倒数循环节定义
定义:任意整数N,我们用Q来表示其倒数循环节长度位数,相当于一个圆圈加上一个节点分隔,这样就表示了循环节长度。
同时,为了计算方便,我们定义凡是可以除尽的倒数,其循环节长度为1,因为其后以0来循环,这样:1/2=0.50000…,其循环节长度Q2=1,以0循环。
同理,1/5=0.20000…,其循环节长度Q5=1,以0循环。
1/4=0.25000…,其循环节长度Q4=1,以0循环。
1/3=0.3333…,其循环节长度Q3=1,以3循环。
1/7=0.142857142857…,其循环节长度Q7=6,以142857循环。

质数倒数循环节定理
定理1:若P为质数,Qp为其倒数循环节长度位数,
则Qp=(P-1)/k k为整数。
证明:∵P为质数,根据费马小定理
10(P-1) ≡1(mod P),
10(P-1)-1|P, 也就是999…99(共P-1个9)可以整除P,其结果必定为P-1位或(P-1)/k位。
∴ Qp=(P-1)/k k为整数

最大循环节质数定义
定义:若P为质数,P的倒数循环节长度为Q,且Q=P-1,我们定义P为最大循环节质数。

同源循环节质数定义
定义:若P1,P2为质数,P1的倒数循环节长度为Q1,P1的倒数循环节长度为Q2,
Q1 > Q2, 且 Q2|Q1, 我们定义P1,P2为同源循环节质数。

循环节公倍数定理
定理1:若P1,P2为质数,P1<>P2, M=P1P2,Qm为的倒数循环节长度位数,
则Qm=[Q1 ,Q2]=Q1
Q2/k

引理:若P1,P2…Pn为质数,M=P1P2….Pn,Qm为的倒数循环节长度位数,
则Qm=[Q1 ,Q2…Qn]

同质数积循环节定理
定理2:若P为质数,M=PP,QP为P的倒数循环节长度,Qm为M的倒数循环节长度位数,则Qm=QP=(P-1)*P/k

证明:∵Q 为P的倒数循环节长度

引理:若P为质数,M=P^n ,QP为P的倒数循环节长度,Qm为M的倒数循环节长度位数;
P=3 ,则Qm=3^n-2
除3以外的任意质数 ,则Qm=QP*P^n-1

二质数积定理

定理3:若P1,P2为质数,M=P1P2,Qm为的倒数循环节长度位数,则M≡(P1+P2-1)(mod Qm)
P1,P2不是同源质数
证明:
∵ P1,P2为质数,P1的倒数循环节长度为Q1,P1的倒数循环节长度为Q2,
根据费马小定理有:P1=a
Q1+1, P2=bQ2+1 a,b为整数
Q1 ,Q2为P1,P2的倒数循环节长度
根据循环节公倍数定理:Qm=[Q1 ,Q2]=Q1
Q2/k k=(Q1 ,Q2)为整数,
∴M=P1P2=(aQ1+1)(bQ2+1)
=ab
Q1Q2+aQ1+bQ2+1
得到:M/Qm=(ab
Q1Q2+aQ1+bQ2+1)/Q1Q2/k
=kab+ka/Q2+kb/Q1+k/Q1Q2 (1)
(P1+P2-1)/Qm=((a
Q1+1)+(bQ2+1)-1)/Q1Q2/k
=ka/Q2+kb/Q1+k/Q1*Q2 (2)
∵ a,b,k为整数, 去除(1)中的第1项kab, 则(1)和 (2)的同余
∴ M ≡ (P1+P2-1)(mod Qm)
证毕。

推论1:若P1,P2为质数,M=P1P2,且P1,P2为同源循环节质数,Qm为的倒数循环节长度位数,
则M≡1(mod Qm)
证明:∵P1,P2为同源质数,Q1 ,Q2为P1,P2的倒数循环节长度
根据费马小定理有:P1=a
Q1+1, P2=bQ2+1 a,b为整数
∴假设Q1 > Q2, 根据同源循环节质数定义, Q2|Q1, Qm=Q1
M/Qm=(ab
Q1Q2+aQ1+bQ2+1)/Q1
=ab
Q2 + bQ2/Q1 + 1/Q1
∵ a,b为整数,Q2|Q1,且Q2 为P2的倒数循环节长度是整数。
∴ M≡1(mod Qm)
证毕。

推论2:若P为质数,M=PP,Q 为P的倒数循环节长度,Qm为M的倒数循环节长度位数,
则M≡P(mod Qm)
证明:∵Q 为P的倒数循环节长度
根据同质数积循环节定理:Qm=Q
P
∴ M/Qm=P2 /(Q*P)
=P /Q
∵ P <Q
∴ M ≡ P (mod Qm)
证毕。

试证:
哥德巴赫猜想:若N为任意不为2的偶数2n,则其必定可以分解为两个质数之和。
证明:
假设:存在P1,P2一对质数,其中P1=n+x,P2 =n-x, N=2n
同时M=P1*P2=n∧2 -x∧2

根据定理3:二质数积定理有:M ≡ (P1+P2-1)(mod Qm)
即:M ≡ (N-1)(mod Qm)
证明方程:M- QmY= (N-1) 一定有一组整数解,即可得证。
∵M=P1P2=n∧2 -x^2
∵ Qm=[Q1 ,Q2],
P1,P2是一对质数,
有Q1=(P1-1)/a=(n+x-1)/a,
Q2 =(P2-1)/b=(n-x-1)/b,
Qm=(n+x-1)(n-x-1)/(a
bk)
=((n-1)∧2-x∧2)/(a
bk) a,b,k为整数
∵M≡2n-1(mod Qm)
∴n∧2 -x^2 -((n-1)∧2-x∧2)/(a
bk)Y=2n-1
当Y=a
b
k时上述方程成立
∴ 上述方程一定有一组整数解,得证

补充:
特别情况,
①当P1=P2时,N=P1+P2
M≡P1(mod Qm)
时方程P1=P2为质数,符合
②M≡1(mod Qm)
P1,P2为同源质数
证毕。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值