龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。
每到中午 12 点,帕特小区就进入了点餐高峰。一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……
看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
输入格式:
输入第一行是两个数 N 和 M (2≤N≤105, 1≤M≤105),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。
接下来有 M 行,每行给出一个新增的送餐地点的编号 Xi。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
输出格式:
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
输入样例:
7 4
-1 1 1 1 2 2 3
5
6
2
4
输出样例:
2
4
4
6
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int p[N],dis[N],v[N],a[N],b[N],num,r;
struct E{
int u,nxt;
}e[N*2];
void add(int x,int y){
e[++num]=(E){y,p[x]},p[x]=num;
}
void dfs(int s){
for(int i=p[s];i != 0 ;i=e[i].nxt)
{
dis[e[i].u]=dis[s]+1,dfs(e[i].u),v[s]=min(v[s],v[e[i].u]);
}
if(s!=r) a[v[s]]++;
}
int main(){
int n,m,x,s=0,mx=0;
cin>>n>>m;
for(int i=1;i<=n;i++){
scanf("%d",&x);
if(x>0) add(x,i);
else r=i;
v[i]=1e5+5;
}
for(int i=1;i<=m;i++) scanf("%d",&b[i]),v[b[i]]=min(v[b[i]],i);
dfs(r);
// for(int i = 1 ; i <= m ; i ++){
// cout << a[i] << endl;
// }
for(int i=1;i<=m;i++)
s+=a[i],mx=max(mx,dis[b[i]]),printf("%d\n",s*2-mx);
}