Dijkstra求最短路 I(朴素算法)

Dijkstra求最短路 I

给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1。
输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示1号点到n号点的最短距离。
如果路径不存在,则输出-1。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

分析:

本题数据范围:1≤n≤500,1≤m≤10^5 m > n^2 稠密图,因此用邻接矩阵更为合适

数据结构中对于稀疏图的定义为:有很少条边或弧(边的条数|E|远小于|V|²)的图称为稀疏图(sparse graph),反之边的条数|E|接近|V|²,称为稠密图(dense graph)。此定义来自百度百科,实际上是一种朴素的理解,简单来说边越多,图就越稠密

代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<int, int> PII;

const int mod = 998244353;
const int N = 1e3;

int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
int n, m;
// 1≤n≤500,1≤m≤10^5 m>n^2 稠密图用邻接矩阵
int g[N][N];//存储边的信息.
int d[N]; //存储各点到1号的的最小距离
int st[N]; //将已经确定最短距离的点存入

void  Dijkstra(){
    memset(d,0x3f,sizeof(d));  //初始化距离
     d[1] = 0;
     for(int i=0; i<n; i++){  //每次循环确定一个点的最短距离

        int minn = 0x3f3f3f3f,t=-1;
        for(int j=1; j<=n; j++){ //确定最短点
            if(!st[j]&&minn>d[j]){
                t = j;
                minn = d[t];
            }
        }
        st[t] = 1; //将t存入st数组中

        for(int j=1; j<=n; j++){  //用t点更新各点到1号点的距离
            d[j] = min(d[j],d[t]+g[t][j]);
            //cout << d[j] << " ";
        }
     }
}

int main() {
   cin >> n >> m;
   memset(g,0x3f,sizeof(g));//初始化矩阵
   for(int i=1; i<=m; i++){
     int a,b,c;
     cin >> a >> b >> c;
     //由于存在重边,存储最小的权重
     g[a][b] = min(g[a][b],c);
   }
    Dijkstra();
    if(d[n]==0x3f3f3f3f){
        cout << "-1";
    }else{
        cout << d[n];
    }

    return 0;
}

本题样例分析:

在这里插入图片描述
首先将d[1]赋值为0,内循环确定一个最短点1号,之后用t=1,更新与其相邻的两个点的距离,d[2]=2,d[3]=4.第二次循环,确定2号为最短点,存入st中,之后用t=2,更新3号节点,c此时d[3]由4变为3,结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值