一、协同过滤方法
顾名思义,“协同过滤”就是协同⼤家的反馈、评价和意见⼀起对 海量的信息进⾏过滤,从海量信息中筛选出⽬标⽤户可能感兴趣的信息的推荐过程。
二、UserCF协同过滤算法过程
图2-2描述了⼀个电商⽹站场景下的协同过滤推荐过程,其推荐过 程按照图2-2(a)~(f)的顺序共分为6步。
- 明确商品库中的数据有哪些:电商⽹站的商品库⾥⼀共有4件商品:游戏机、某⼩说、某 杂志和某品牌电视机。
- 明确任务:⽤户X访问该电商⽹站,电商⽹站的推荐系统需要决定是否 推荐电视机给⽤户X。换⾔之,推荐系统需要预测⽤户X是否喜欢该品牌的电视机。为了进⾏这项预测,可以利⽤的数据有⽤户X对其他商品 的历史评价数据,以及其他⽤户对这些商品的历史评价数据。图2-2 (b)中⽤绿⾊“点赞”标志表⽰⽤户对商品的好评,⽤红⾊“踩”的标志 表⽰差评。可以看到,⽤户、商品和评价记录构成了带有标识的有向图。
- 构建共现矩阵:为便于计算,将有向图转换成矩阵的形式(被称为“共现矩 阵”),⽤户作为矩阵⾏坐标,商品作为列坐标,将“点赞”和“踩”的⽤ 户⾏为数据转换为矩阵中相应的元素值。这⾥将“点赞”的值设为1, 将“踩”的值设为-1,“没有数据”置为0。
- 计算用户的相似性:⽣成共现矩阵