【三维点云笔记】点云数据增强中随机dropping color的作用、流程、代码实现

在点云数据增强中,随机dropping color是一种常用的数据操作过程,它的目的是改变点云数据的颜色分布,从而增加模型的鲁棒性和泛化性能。具体来说,该过程会将点云中的一部分颜色信息随机设置为全零,也就是将其去除。这个操作过程通常由以下步骤组成:

  1. 生成随机位置。在点云中随机选择一部分点作为操作对象,可以使用均匀分布或高斯分布等随机位置生成方法。
  2. 确定颜色值。在已选定的点的位置处,将颜色值设置为 (0,0,0),也就是将其去除。这种随机dropping color的方式可以使得每个点的颜色分布具有不确定性,从而更加符合现实世界中的真实情况。
  3. 可选步骤。在一些情况下,可以对已选定的点进行插值操作,让这些点周围的颜色值更加平滑地过渡到黑色。用这种方法处理可以改善操作后点云数据集的质量,从而提高数据增强的效果以及训练模型的泛化性能。

随机dropping color的代码示例:

import numpy as np
import open3d as o3d
 
def random_dropping_color(pcd: o3d.geometry.PointCloud, drop_ratio: float):
    """
    随机去除一部分点的颜色信息
    :param pcd: 点云对象
    :param drop_ratio: 去除颜色信息的比例
    :return: 去除颜色信息后的新点云对象
    """
    # 获取点云中的点数
    num_points = np.asarray(pcd.points).shape[0]
    # 生成二进制掩码,随机去除某些点的颜色信息
    mask = np.random.choice([0, 1], size=num_points, replace=True, p=[1-drop_ratio, drop_ratio])
    # 将掩码为1的点的颜色信息设置为(0,0,0),去除颜色信息
    np.asarray(pcd.colors)[np.where(mask)] = [0, 0, 0]
    return pcd

作用:

  1. 增加模型的鲁棒性。通过随机去除部分点的颜色信息,可以使模型更加关注点云的几何结构而不是颜色信息,从而提高模型对噪声、变形和遮挡等情况的稳健性。
  2. 提高点云数据的泛化性能。随机dropping color可以使得数据增强后的点云数据更加具有随机性和多样性,可以增加模型的泛化性能,避免过拟合。
  3. 增加点云数据的多样性。通过随机去除颜色信息,可以使得点云数据的颜色分布更加复杂和多样化,能够帮助模型更好地应对现实场景中的各种颜色分布变化。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值