1、绘制发送端16QAM信号星座图
2、绘制解调后16QAM信号星座图(SNR=10dB,5+6*(1+序号/130)],15dB,20dB),通过对星座图,观察分析不同SNR对OFDM信号传输的影响
我们首先定义了信号调制参数,包括16QAM调制和符号数。然后,通过随机生成的16QAM调制符号,生成16QAM调制信号,并绘制发送端16QAM信号的星座图。
接下来,通过添加不同信噪比(SNR)的加性高斯白噪声(AWGN),模拟解调后的信号。在这个示例中,我们选择了SNR值为10dB、15dB和20dB。解调后的信号存储在rx_signal中。最后,使用循环绘制解调后的16QAM信号的星座图,每个子图对应不同的SNR值。
通过观察发送端和解调后信号的星座图,可以分析不同SNR对OFDM信号传输的影响。在较高的SNR值下,星座图可能更加集中,符号点之间的区分度更高,而在较低的SNR值下,可能会出现更多的噪声干扰,导致星座图扩散和模糊,符号点之间的区分度较低。
绘制发送端16QAM信号星座图
绘制解调后16QAM信号星座图
% 信号调制参数
M = 16; % 16QAM调制
num_symbols = 100; % 符号数
SN=55;%序号
% 生成16QAM调制信号
tx_symbols = randi([0 M-1], 1, num_symbols); % 随机生成调制符号
tx_signal = qammod(tx_symbols, M); % 16QAM调制
% 绘制发送端16QAM信号星座图
figure;
plot(real(tx_signal), imag(tx_signal), 'o');
title('16QAM信号星座图');
xlabel('同相分量');
ylabel('正交分量');
axis square;
% 解调后的信号添加AWGN(不同SNR)
snr_values = [10, 5+6*(1+SN/130),15, 20]; % 不同信噪比(SNR)
rx_signal = zeros(length(snr_values), num_symbols); % 存储解调后的信号
for i = 1:length(snr_values)
% 添加AWGN噪声
rx_signal(i, :) = awgn(tx_signal, snr_values(i), 'measured');
end
% 绘制解调后16QAM信号星座图
figure;
for i = 1:length(snr_values)
subplot(length(snr_values), 1, i);
plot(real(rx_signal(i, :)), imag(rx_signal(i, :)), 'o');
title(['解调16QAM信号星座图 (SNR = ' num2str(snr_values(i)) ' dB)']);
xlabel('同相分量');
ylabel('正交分量');
axis square;
end